Do I Need to Worry?

Last month we got an email from John, who had some questions about his report. His F250 was showing trac­es of coolant in the oil, and lead­, from bearings, was elevated. He had the engine out of the truck pending repairs and wanted to know: how much lead is too much? Did he need to replace the bearings?

“Do I need to worry?” is a common question, and one there’s not one easy answer for. We’ve had people pull the bearings out of a Corvette when lead was only a few ppm above average and we said in the report, “You don’t need to do anything about this yet.” (For the record, that guy called us and said his bearings looked fine and was kind of honked off about it.) Oil report showing high, but steady, lead readings

We’ve had people with metals that are high all along, but not changing, and it never turns into a problem. And we’ve had people not pursue what appeared to be a problem, and re­gret it in the end (this is especially problematic when the engine is in an airplane).

So how do we decide what’s a problem and what’s not? It would be great if there was a magic number, but there’s not. We assess each en­gine individually, mainly focusing on these things:

  • How your sample com­pares to your trends
  • How your sample com­pares to average
  • The balance of metals to each other
  • Whether you’re using additives

Trends

Oil report showing a trend of steady lead, then an increase in leadIf you have them, trends are the most helpful thing we look at in determining your engine’s health. It takes three samples to get a good trend going (though we can often tell if something is amiss earlier than that).

All engines are different, as are their drivers, how they’re used, and where they are in the country. As such, it’s very helpful to sample a few oil changes in a row, at least at first, and have a baseline established for your specific engine. Consistency counts. If your engine is wearing a lot but it’s doing so steadily, it’s possible that the metal isn’t a problem. Problems tend to get worse over time – not remain stagnant.

Figure 1 is a good example where lead (a bearing metal) doesn’t appear to be a problem. That engine has more lead than average, but it’s consistent. Since the owner wasn’t having any problems, our recommendation was to just watch lead as time goes on. Side-by-side oil reports showing different wear metals for a Toyota 1.8L and an Oldsmobile 455 engine

But on the other hand, look at Figure 2. Lead read at just 12 ppm in this sample—that’s well within the average range, but we marked it because lead had always been much lower than this. If this had been his first report, we might have thought lead was okay. But since we know that lead is usually low, we told him the bearings are wearing more than they were and to watch for abnormalities like low oil pressure.

Universal averages

Of course, when you start sampling, you don’t have trends to rely on. So our second line of defense, when we’re looking at your numbers, is universal averages.

We have averages established for most of the engines out there, though we’re always adding to our database as new types of engines (and transmissions and generators and other machinery) are being made all the time. When you do your first sample, we’ll compare your metals to averages for your specific engine.

It’s helpful for us to know what kind of engine you have. Look at Figure 3, for example. This is a comparison between the Toyota 1.8L 1ZZ-FE (used in Corollas and Vibes), and the Oldsmobile 455 (used in older motorhomes and the Cutlass and Trans Am). Toyotas don’t wear much, whereas the Olds 455 makes a lot of metal.

Oil report for an armored vehicle in New York City, with consistently more metal than averageIf we don’t know what kind of engine you have, we might end up comparing your numbers to the wrong set of averages, or just a generic engine file. We can still tell if something is way out of line, but the more subtle differences between your engine and averages are harder to see.

Along those same lines, some vehicles come with many different engine options, so just telling us the year, make, and model of your vehicle isn’t always enough. The 2006 Silverado, for example, could have one of five different gas engines or the 6.6L diesel engine in it. We have different averages for each of those engine types. Take a look at Figure 4.  The metals are similar in those en­gines, but they’re different enough to matter when we’re determining if something is too high or not.

Generally speaking, we’ll mark a metal in bold when it’s twice average or more. But not always—there are also times when we don’t mark elevated metals, if we know something else is going on.

We test a fleet of ar­mored Sprinter vans that operate in New York City, for example. The vehicles are loaded up with armor and spend their entire lives idling and driving in unforgiving traffic conditions. It’s no surprise that the engines wear more than average. (See Figure 5.)

Balance of metals

We also look at the balance of metals relative to each other. In Figure 6, lead is not reading twice average but we marked it anyway. According to averages, lead and iron should be at about a 1:1 ratio. In this sample, the lead: iron ratio is more like 4:1. This bal­ance tells us the bearings are wearing more than the rest of the engine, and that can be a sign of trouble too. Oil report for a Mercedes Benz 3.0L with high, but steady, iron readings

Additives

Another factor to consider is the use of additives and/or leaded fuel. Lots of people use Restore, which has copper and lead in it, and although in that form those elements aren’t harmful, they do make your numbers read high.

Likewise, if you’re using leaded fuel, racing fuel or certain octane boosters, fuel blow-by will cause high lead readings. The highest lead reading we’ve seen in any BMW S65 engine was 1055 ppm. The rest of the metals looked great, though, and the customer had mentioned using an additive, so we were pretty sure the lead in his sample wasn’t a sign of an impending bearing failure.

How much metal is too much?

So how much metal is too much? In truth that num­ber is different for every engine. You already know that we take a lot of things into account in trying to answer that question. Usually we’ll call you to get more information if we’re not sure, and we’ll suggest giving it an oil change or two to see how trends shake out. If something is seriously out of line we can usual­ly tell, even if we don’t know your engine type or how you use it.

High lead in an oil report for a BMW engine known for bearing problems

We will say this, though: it’s pretty rare for a major mechanical problem to happen unexpectedly over­night. Most engines will give at least some warning before things go south, and that’s why you do analy­sis. Follow the trends to see what’s normal for your engine, and when deviations occur, you’re informed enough to make a good decision.

By |2024-09-19T10:07:41-04:00July 28, 2023|Articles, Gas/Diesel Engine, Marine|Comments Off on Do I Need to Worry?

Better Mileage with Synthetic?

One afternoon a customer emailed us and said he gets better mileage when he’s using synthetic oil. To be honest, we were skeptical. If you’ve been with us long enough, you know we generally think that oil type doesn’t matter. Use Oil A for 5,000 miles and do a sample to check your metals, then use Oil B for the same miles and resample. Most people will find that their engine wears just the same regardless of oil brand. But here is an angle we hadn’t tested — is fuel economy affected by your choice of oil? We decided to try and find out.

Designing the experiment

When we first started talking about a fuel economy experiment, we came up with a lot of questions. How will we know how much fuel we’re actually using? How will we take into account tire pressure and other things that can affect fuel economy? Do we need to take into consideration the natural expansion of gas at different temperatures?

We eventually decided on the following plan. It’s probably not scientific enough for a MythBusters special, but it’s about as good as we could get without installing special pumps and meters, and it should be repeatable if you want to give it a shot in your own vehicle.

Counting miles was the easy part — we just recorded miles at every gas fill-up. Figuring the “per-gallon” was a little trickier, since we don’t really have an accurate way to measure fuel consumption.

In an episode of MythBusters where they were doing something that involved calculating miles/gallon, they took an old clunker, removed the hood, and rigged up a container that measured fuel consumption to the milliliter. That’s a little more involved than we wanted to get, especially since our guinea pigs are analysts Amanda and Alex’s daily driver vehicles.

We ended up recording the number of gallons needed to fill up at the pump. We decided to resist the urge to “top-off” the tank when filling and just stop pumping whenever the pump stopped. Is this a perfect measure of fuel usage? Certainly not. Every pump could be a little different in its stopping point depending on the day, the pump, the volume/speed of fuel dispensed, ambient temperature, and so on…but these things are impossible to control in the real world.

We decided to do ten gas fill-ups on each type of oil. With ten fill-ups, we’d have enough data to take into account some of those variables mentioned above that we can’t control. We also made a note to monitor tire pressure, though that varied so little that we thought it negligible.

Royal Purple vs. Quaker State

Amanda started with Quaker State Advanced Durability 5W/20. The price at O’Reilly Auto Parts was $5.29/quart or $23.99 for a handy 5-quart bottle, which is just perfect for her Kia, which takes 4.8 quarts of oil. She ran that oil in her car from May to June 2013. In ten gasoline fill-ups, she ran 3,703.7 miles and used 131.858 gallons, for a fuel economy of 28.09 miles/gallon.

She decided that 3,703.7 miles was too early to change her oil, so she kept running that oil for a total of 6,333 miles and changed the oil on July 27, 2013. The result was some good wear numbers (see figure 1, F66495).

On to the synthetic! Royal Purple 5W/20 costs $9.79/quart at O’Reilly Auto Parts and does not come in a handy 5-quart jug, so we ended up paying $48.95 for oil on this oil change. Amanda ran this oil from the end of July until October, going 3,829.2 miles and using 137.002 gallons of fuel, for a final fuel economy of 27.95 miles/gallon, a decrease of 0.5% compared to the Quaker State conventional.

 

Oil Price/5 gal. Miles Gals. MPG
Quaker State 5W/20 $23.99 3703.70 131.89 28.08
Royal Purple 5W/20 $48.95 3829.20 137.00 27.95

 

Amanda ran the Royal Purple a total of 14,277 miles before changing it (we’re all for getting our money’s worth out of an oil change!), and ended up with a little more wear than usual (figure 2, G22246).

The two oils are very close in terms of fuel economy, with the conventional Quaker State slightly edging out the more expensive Royal Purple. But in the spring of that year she was doing a little more highway driving than in the fall, with a few trips between Illinois and Green Bay, Wisconsin, and so on. Even so, the added cost for the oil itself almost certainly defeats any slight improvement in MPG she might have gotten. So let’s look at Alex’s numbers.

Mobil 1 vs. Mobil Super & Advance Auto Parts 5W/30

Alex spent $34.85 for five quarts of Mobil 1 Advanced Fuel Economy 0W/30 at Wal-Mart and ran the oil from January 2013 to May 2013. He traveled 3,061.1 miles, used 91.3 gallons of gas and ended up with a fuel economy of 33.53 miles/gallon.

Then he bought five quarts of Mobil Super 5W/30 conventional oil for $18.10 and ran 3,234.9 miles on 92.0 gallons of fuel from June to October 2013, for an average fuel economy of 35.16 miles/gallon¾a difference of 4.9% in favor of the conventional oil.

 

Oil Price/5 gal. Miles Gals. MPG
Mobil 1 AFE 0W/30 $34.85 3061.10 91.30 33.53
Mobil Super 5W/30 $18.10 3234.90 92.00 35.16

 

Alex noted that his engine tends to get better fuel economy in general in the warmer months than the colder months, so he repeated the experiment again the following year, using Advance Auto Parts 5W/30 conventional oil from February to March 2014, getting 32.93 MPG.

He then ran Mobil 1 Advanced Fuel Economy 0W/30 from May to August, getting an average fuel economy of 34.46 miles/gallon. In this case, Mobil 1 did beat the conventional oil, but his mileage still wasn’t as good as on the original run of Mobil Super 5W/30 conventional, and the added cost of the oil negates any extra miles-per-gallon.

Alex mentioned that on synthetic oil his engine seemed to burn less oil, but since that wasn’t the point of the experiment, we didn’t get too deep into trying to quantify that.

Synthetic or conventional?

So…which oil to choose? We get asked this question hundreds of times a year on the phone, in e-mails, and written on oil slips. And honestly, from a wear standpoint, we don’t find a lot of difference between conventional and synthetic oils. Some engines may run better on one than the other, or maybe you find that your engine uses less oil on one or the other, but these things are hard to quantify from our end. Chart showing a summary of 6 oil brands and their average MPG.

There are so many factors that affect how your engine wears, what kind of mileage you get, and how long your engine will last that we could never issue a blanket one-size-fits-all statement saying “You should use X.”

We did not find that synthetic oil gave us better fuel economy, but that doesn’t mean that you won’t. Feel free to try this experiment at home and let us know what you find. Or, if you’re not experimentally-inclined and you’re wavering about what oil to use, feel free to use whatever fits your wallet. Any API-certified oil is going to be quality oil, and your engine should be happy with whatever you choose.

By |2024-09-19T10:08:27-04:00July 28, 2023|Articles, Gas/Diesel Engine|Comments Off on Better Mileage with Synthetic?

Antifreeze: The Silent Killer

After analyzing engine oil for 30 years, I can safely say the thing that kills more engines than any other is antifreeze seeping into the oil. We call it the “silent killer” since there is normally no indication this dreadful contaminant is about to strike until after the damage is done. Neither you nor your mechanic can see it in the oil. The dealer won’t know it’s there.

We like to say engines speak before they fail, but in this case, you aren’t likely to hear much of anything until you hear just about the worst sound an engine can make. Oil analysis is the only way of knowing this sneaky killer is closing in on you. We can see it in the oil at a trace level, long before any harm is done.

We call people daily to let them know anti-freeze contamination is about to ruin their day. A typical reaction is, “What? That engine is running fine!” And they are right—the engine will, in most instances, run perfectly well until a bearing spins, oil pressure drops, and the engine destructs to the point of no salvation.

Some engine configurations are more susceptible to the problem than others: V-6s and V-8s for instance, are perhaps more prone than other engines. But no engine is immune (except air-cooled engines!). One would think that after 100 years of building engines, the automakers would get it right. To my knowledge no one has.

The problem with design

The engineers who design engines do a marvelous job of building lighter, more efficient and faster engines. But for every step forward in the process, there are compromises.

Building lighter engines necessitates working with new alloys for the various parts that are bolted together. Gaskets are used to seal between the parts. To get an engine perfectly right, they have to use parts that expand and contract with heat at the same rate, and gaskets that are hardy enough to seal well even after they age and suffer millions of heat cycles. You can imagine the engineers tossing in their sleep while wrestling with this dilemma.

A classic example of the problem was a Jaguar in-line 6-cylinder engine I once owned. I loved that engine with its long, high-end torque curve and mellow growl. It was probably the first duel overhead cam design that managed quiet chains in the days before belts were used. But for all its wonderful assets, there was this one drawback: they used an aluminum alloy head on a cast iron block. If you managed 50,000 miles on a head gasket, you were a very fortunate person.

With an in-line design, the anti-freeze contamination usually develops at the head gasket. With the V-designs, a more common source of the problem is intake manifold gaskets.

The manifold gasket supports the air/fuel system mechanism and straddles (and is bolted to) the heads. You can imagine the complexity of the problem of heat cycles. Block expansion forces the heads up and away from the crankshaft. The lowly intake manifold is not in a position to move in concert with the expansion. It would be like trying to ride two horses standing on the two saddles.

The result of this set-up is that intake manifold gaskets fail. Antifreeze starts seeping into the oil. It often takes quite a long while before the problem manifests itself in a failure, but it can also happen quickly. Since there are usually no obvious symptoms of the problem, the unwary engine owner usually drives the engine to oblivion.

Another common question we hear is, “How long until it fails?” Unfortunately, it’s impossible to predict how long an engine with an antifreeze problem will last. Many variables factor into the equation: the type of engine, how it’s driven, the environment it’s operated in, and—the most unpredictable of all—Lady Luck. Some people can limp along for ages with a slight trace of coolant that never turns into anything serious. Others turn up a trace and then WHAM! Faster than you can say “spun bearing” the engine fails.

Don’t quote me on this, but if I had to estimate the severity of the problem in car and truck engines today—judging from our oil samples—I would suggest 1–2 % of the cars and trucks in the road today are in the process of failing from antifreeze contamination of the oil. Fortunately, most antifreeze problems can be detected early with oil analysis, and in most cases we can save the engine before a failure. We would like to save all of them. But we can’t save anything until see the oil from it.

By |2024-09-19T10:09:24-04:00July 28, 2023|Articles, Gas/Diesel Engine, Marine|Comments Off on Antifreeze: The Silent Killer

The eBay Oils (Part 3)

Welcome back to the eBay Oils! If you missed the previous two installments, wherein we describe what we found in some old oils that Ryan bought on eBay, you can read them here and here.

HyVis 4 Winter

We’re going to kick this party off with an oil that I personally have never heard of: HyVis 4 Winter Motor Oil. The can looks very groovy and it has no zip code, so I’m placing it from the very early 1960s or late 1950s. It’s “Mileage Metered” and it has a picture of a medal with a ribbon on the can, so you know it’s good stuff. HyVis was apparently way ahead of the curve on extended oil use, because on the top of the can it says it’s good for 1,000 to 9,999 miles. Interestingly, the oil has zero additive in it (Figure 1). Or perhaps it’s got additive in it, just not any that we read. The grade is not listed on the can, but the viscosity came back as a light 20W. With the lack of additive it’s not surprising that the TBN read 0.0. It’s tempting to do an experiment and run this apparent mineral oil for 10,000 miles in the dead of winter, just to see what would happen. If you know of any guinea pigs, send them our way!

Amoco LDO 10W/40

Next up is a pair of old oils: Amoco and Texaco. These names remind me of gas stations we’d stop at on family vacations in the 1970s. Amoco (which he always pronounced Uh-muck-o) is the one that reminds me most of my Dad. Amoco gas stations were called Standard stations in some parts of the country, and I’ll always associate the blue, red, and white logo with long trips across the country in our green van with the velour bed and hanging beads. But Amoco did more than fill up gas tanks in the 70s–they also sold oil, and this “Long Distance” version is an SAE 10W/40. The additive package looks a lot like the Mobil Special oil we saw: heavy on phosphorus and zinc, lighter on calcium and magnesium (Figure 2). Just the right oil for a couple of bandana-wearing hippies traveling with two little kids from Indiana to Nova Scotia in 1976 in a green van with a sunset painted on the side. Ah, the ’70s.

Texaco Ursa ED 20-20W and Texaco Havoline Super Premium 10W/40

The Texaco Ursa ED oil is scant on advertising copy. They must have had their hands full designing this “Extra Duty” 20-20W oil instead. On the can they recommend this oil for everything you can think of except lawn mowers. It’s got a lot of additive in it (Figure 3), but the additives are configured more like what we’d expect out of a gear lube ¾ except with more calcium. Why the 20-20W and not just 20W? We’re not sure. Maybe it’s fancier. The viscosity read like what we see today out of a standard 5W/30. Texaco Havoline Super Premium 10W/40, on the other hand, looks a lot like one of today’s diesel-use oils in additives (Figure 4), with a normal 10W/40 viscosity.

Lucky Strike 20-20W

We knew Lucky Strike made cigarettes, but we had no idea there was an oil of the same name until Ryan found this can and bought it on eBay for $29.99. The can looks seriously old, with no information on it beyond the name, a picture of an oil derrick, and the words “One U.S. Quart.” A quick Google search revealed no real information¾just some old Lucky Strike Oil & Gas Company stock certificates from 1917. The oil probably isn’t quite that old, but it may very well be the oldest of all the cans we bought. They didn’t do a lot with additives back then, though we did turn up 125 ppm barium (Figure 5). Not a lot else was present in this 20-20W oil. Note that without any calcium or magnesium, the TBN read 0.0.

 

Union 76 20W/50

Union 76 20W/50 is clearly made for speed. You can tell because of the black-and-white checkers on the front. According to the lid, this oil was tested and certified by the national association for stock car auto racing. My friend Google tells me that stock car racing became popular back in the 1920s (when moonshiners were outrunning Johnny Law during Prohibition times), but this can is clearly not that old. Not only did they not make multi-viscosity oils that long ago, but the can comes from zip code 90017 so it has to be from 1963 or later. According to the can, it’s 100% parrafinic oil with selected additives, which our spectrometer reveals to be your standard line-up of calcium, phosphorus, and zinc (Figure 6). Look at that viscosity though¾it’s higher than we see in today’s 20W/50s.

Castrol R Racing

Who doesn’t love Castrol? Other oil companies, that’s who. But we like them all right, so we bought two old cans. One, with liquid tungsten, we reviewed in the first article in this series. The other appears to be much older: I’d place it from the 1940s or 1950s. Not only does this can have a high opinion of itself (“The Masterpiece in Oils!”), but they direct you how to ask for it at the store: “Do not ask for ‘XL’ or ‘XXL.’ Always state the full name.” Like modern oils, they stress the high quality of the oil with terms like “organo-metallic” that are meant impress those of us who aren’t in the oil business. I don’t know if I’d call this a masterpiece in oil work though: it looks like what we see out of ATFs these days as far as additives go (mostly phosphorus with a little zinc thrown in). Since the word “Racing” is stamped into the top of the can, the thick viscosity (like a 50W) makes sense (Figure 7).

Sinclair Dinolene 20-20W

I’ve always had a soft spot in my heart for Sinclair. The can has a picture of a dinosaur on it! This shit came from the ground, no doubt about it! Another 20-20W oil, the oil is light on advertising copy but heavy on additives. In fact, it looks a lot like recent versions of Shell’s Rotella 5W/40, except with a little less calcium. It’s much lighter than Shell’s 5W/40, though, with a viscosity reading like a 30W or a heavy 20W oil. Note the presence of lead (Figure 8). 

Amsoil Super Premium 10W/40

Until I started writing this article, I had no idea that Amsoil has been around since 1972. This particular sample came, like all the rest, from a can, so it has to be at least from the mid-’80s (which is when most companies switched to plastic bottles). Even 30+ years ago, Amsoil was pushing 25,000-mile oil changes, and the can even lists a comparison between this oil and regular old petroleum as far as engine temps, flashpoint, oxidation, and lubrication range (unsurprisingly, Amsoil wins in each category!). Modern Amsoil products tend to be heavy on additives and that was true back in the day as well (Figure 9). Just for fun, we compared this oil with a virgin sample of Amsoil 10W/40 that we ran in February 2012 and they look a lot alike. The only difference is in the older oil there’s less of everything: 500 ppm less calcium, and 100-200 ppm less phosphorus and zinc. They used magnesium in the older oil, while the TBN and viscosities were nearly identical.

Pennzoil Dex2 and Z-7 10W/40 

Pennzoil started as Penn’s Oil in 1913, and I have to admit, “Why the Liberty Bell?” was my most pressing question as I looked over these two old cans. Originally, Penn’s Oil came from an oil field in Pennsylvania and was christened with a Liberty Bell logo to remind users of its Pennsylvania roots. This can of ATF clearly has an earlier generation of logo on it, and Google informs me that Dexron II was introduced in 1972. This may very well have been the transmission oil that kept our green van chugging through the ’70s. There are a lot of different ATFs in stores today, though generally they have about the same additive configurations. This one is a little different in that it has more boron, magnesium, and zinc than most modern ATFs. The viscosity is right where we’d expect it to be though. Pennzoil’s 10W/40 oil can is flashy, a la the 1980s. It’s “The Motor Oil With Z-7” and although they don’t specify what that is, they do specify that “You need no extra oil additive.” So that’s reassuring. It’s rated SF-SC-CC, so I’d place it at about 25 years old. Maybe the magic of Z-7 is copper: that’s something we saw a lot of back in the day, when Blackstone was founded. Interestingly, magnesium is the dominant additive in this one, followed by zinc, phosphorus, copper, and boron (Figure 10). The flashpoint was lower than what we see today from 10W/40s.

Renuzit

At last, we finish our tour of ancient oils. (Some of these samples are older than the people reading this article. This makes me feel very old. Hey, get off my lawn!) I said before that I thought the Lucky Strike was the oldest of the oils we tested, but that’s only because I forgot about this can of Renuzit sitting in Blackstone’s garage. It’s rusty on the bottom so it leaks, and it’s not from a can like the others. This one was sold in a 5-quart metal jug. I particularly love this one, because the can not only says you’ll “Cut Your Oil Bills In Half,” but the first point of advertising on the side is a “Faster Getaway!” Now, they don’t actually say that this is the choice of oils for bank robbers, but I know if it was 1941 and my hungry Great Depression self was contemplating which oil to put in my Ford Special for bank-robbing time, this is the oil I’d pick. With practically no calcium or magnesium present, the oil’s TBN read 0.0, but it does provide would-be crooks with phosphorus, zinc, and barium as well as a 20W viscosity for the getaway (Figure 11). When you’re busy working a tommy gun, the last think you want to think about is whether or not you’ve made the right choice in oil.

So that’s the end of our series. A lot of thought goes into making oil, and that’s been the case for many decades now. We’ve poked some fun at the way oil companies sell their products, but heck, they’ve got to say something. We stand by our statement that “oil is oil” and in the end, it doesn’t make a lot of difference what you decide to use. Through all the years and all the permutations and configurations of oil and oil additives, the crude (and now, synthetic) stuff has kept cars running since Henry Ford did his thing more than 100 years ago. Buy what suits your vehicle and your wallet¾not what anyone else says you should use!

By |2024-09-19T10:12:53-04:00July 20, 2023|Articles, Gas/Diesel Engine, Marine|Comments Off on The eBay Oils (Part 3)

The eBay Oils (Part 2)

Welcome back to the eBay oils! If you missed the first installment of this article, you can read it here.

True to his word, Ryan listened to his Passat (if you’ll recall, it was making a noise that sounded like “Sell Me” in German) and got his wife a new Hyundai Elantra this month. Free oil changes were not included as part of the deal, so Ryan will be changing his Elantra’s oil himself. And while he’s willing to experiment with his 1984 ½ ton Chevy pickup truck, it’s doubtful (for now, at least), that he’ll be using either Wolf’s Head or Fox Head oil in his new car.

Wolf’s Head SD 10W/40

Wolf’s Head Motor Oil Company was originally founded in Pennsylvania in 1879 as “Pennsylvania Crude.” (The source of this is Wikipedia, so take this information with a grain of salt.) I’d place the can from the late-1970s or early 1980s. It is “Formulated from Finest Quality Base Stocks and Superior Motor Oil Additives” and back then, like today, the container gives no actual clue as to what the additives are. That’s where we come in. The report is an interesting one. Note the lack of calcium, which is used in almost all engine oils nowadays as a detergent/dispersant additive. Instead of calcium, it contains a lot of copper as an additive. This is a trend we were glad to see die. All that copper in the oil masks bronze wear.

Wolf’s Head ATF

Wolf’s Head also made (makes?) an ATF, though the only selling point on this can is that it’s “Refinery Sealed.” Maybe they couldn’t think of anything interesting to say about it, because honestly it looks just like a lot of ATFs we see today: mostly phosphorus and zinc, with a smattering of other additives thrown in for good measure.

Fox Head 40W

Oil marketing has come a long way since the days of yore. Today when you want to buy a high-dollar oil you’ll find it has a name that conjures up something special: speed (Red Line), richness (Royal Purple), slickness (Amsoil), racing (Mobil 1), space-age (Quantum Blue), etc. I’m not sure what “Elf” is meant to conjure up, but they follow it up with “Excellium” so you know it’s Excellent oil. Contrast those names with our next contender, Fox Head, which just makes me think of…well, a fox head. In my oil. Fortunately, that’s not what analysis turned up. (Although…we don’t test specifically for fox heads, so we could be missing something here.) The Fox Head can is red, white, and blue, so you can feel patriotic when you buy it (unless you’re in Canada. Then you can indulge in justified rage about Americans and how we think we’re the center of the world). Fox Head oil was made by the Tritex Petroleum company out of Brooklyn, NY, and my extensive research (aka first-page Google results) tells me the company still exists and is presently located in Tulsa, Oklahoma. The logo, a sly-looking fox, has nothing on today’s slick oil packages. And the oil itself also has nothing on today’s oils: the oil itself is nearly bereft of additives. Basically a mineral oil, it has a little magnesium, phosphorus, and zinc in it, and not a lot else (Figure 3). This is not necessarily a problem, however. As you’ll recall in the article when Ryan used 30W aircraft oil in his truck, wear went up a little but the engine didn’t fail or anything. Still, I won’t be putting it in my Outback anytime soon.

Shell Rotella S 10W

Shell Rotella has been around for a long time. It’s good oil, and since they’ve been making it for decades, they’ve pretty much got the routine down and haven’t messed with it a lot over the years. Unlike now, when you can actually follow Shell Rotella on Twitter (who knew Rotella had so much to say?), back in the day Rotella had to get by just by on traditional advertising and word of mouth. We called Shell to see how long they’ve been making this oil and the guy not only could not tell me, but he was unable to tell me who might know. Surely someone at that company has a historical file? If so, they’re not sharing that info with plebeians like us. He did mention that Rotella really made its name in the ’70s, though I’m guessing this can of SF, SE, SC oil was made in the late ’80s.  He also said the “S” versions of Rotella were sold internationally, and indeed, this can came from our friendly neighbors to the north (*waves hi to Canada). Suffice it to say that the oil has changed very little over the years. Its main additives are the same as what we see today, but the interesting part of this oil is that it’s a 10W (Figure 4). We often see heavy-duty thin-grade additive packages in tractor-hydraulic fluids, which are used in systems like transmissions and hydraulic systems in off-highway equipment like bulldozers and backhoes. Note the TBN of this oil read higher than most of the others we’re talking about. That’s because of the high calcium level¾the TBN is based on the level of calcium sulfinate and/or magnesium sulfinate. When those compounds aren’t present, you get a low TBN.

Quaker State 30W & 10W

Next up is another oil familiar to today’s buyers: Quaker State. This HDX oil is a straight 30W, and Quaker State was ahead of the marketing game on this one. The can’s copy touts their “high quality,” “modern refineries,” and “quality control laboratories,” and this was about as scientific as it got 30 or 40 years ago. The additive package is fairly stout, though like Wolf’s Head oil, calcium is in short supply (Figure 5). We also bought a can of Quaker State 10W oil, and when we looked at the report we had to go back and double-check the can to make sure this wasn’t actually ATF. It’s not: it’s labeled as an SAE 10W oil, though the additive package looks an awful lot like what we see of out today’s transmission oil. Interestingly, there’s a lot of barium in it (Figure 6). Barium must be expensive, or else it doesn’t do much, because we rarely see it in oil samples of any type nowadays. This is engine oil, but it might work in transmissions too.

Quaker State Deluxe 10W/40 & Sterling 10W/40

Apparently we are fans of Quaker State, because we also tested a couple more varieties: Quaker State Deluxe, and Quaker State Sterling. As you know, modern oil companies generally have a lot of different brands under the same name (for example, Valvoline has TK, TK, and TK, as well as TK). For the most part, these oils are mostly the same; they’ll throw in a few slight differences in additives and call it good. These cans of Quaker State, however, were mostly pretty different. The Deluxe version looked a lot like their 30W oil (but more calcium–Figure 7). Quaker State Sterling HD 10W/40, on the other hand, went out on a limb with almost 800 ppm sodium, almost no magnesium, and then levels of calcium, phosphorus, and zinc that are comparable with today’s oils. Touted as “Energy Saving Motor Oil,” Quaker State was getting its game on in pushing this brand: it mentions “special friction modifying additives,” the longevity of the company (over 60 years when the can was made), and its suitability for those wishing to follow extended drain intervals. Heck, I’m sold, and I see this stuff all the time.

Mobil Special 10W/30 & Artic 20-20W

Mobil is no slouch in the marketing department, but they really outdid themselves with the can we tested, “Mobil Special.” The name alone tells you all you need to know about why to buy this oil. All oil companies like to mess with their additive packages, and Mobil, like the others, changes their oil up fairly frequently. That was the case back in the day too, because the additive package in this “Special” oil is different from what we typically see in today’s oil. Apparently Mobil was an early rider on the ZDDP train, because this oil is chock-full of both phosphorus and zinc. Calcium and magnesium are present too, but at lower levels (Figure 8). We also tested a sample of Mobil Artic oil. The Artic can is clearly older than the other Mobil can¾the logo is older, and there’s no zip code listed with the address, so it’s pre-1963. A straight 20W, it’s labeled as HD oil, meeting “Car Builders’ Most Severe Service Tests.” While it’s “Artic” and not “Arctic,” we can’t help thinking this oil is meant for cold-weather operation. The can even looks like it’s ready for winter: all white, but with a little color on it so you don’t lose it in the snow when you’re out in the tundra changing your oil. This one definitely has an unusual additive package, relying heavily on barium (maybe it’s got a purpose after all!). Interestingly, less zinc is present than phosphorus (Figure 9). Nowadays it’s the other way around.

Phillips 66 Trop-Artic 10W/40

We were going to stop with Mobil Artic, but we can’t resist comparing that one with Phillips Trop-Artic. We’re not exactly sure what Trop-Artic means, but since the can is selling itself as All-Season we’re guessing it’s something along the lines of “use it in the tropics, use it in the arctic.” A 10W/40 in viscosity, this oil looks a lot like what we see out of modern 15W/40s¾a stout additive package and a relatively thick viscosity (Figure 10). In other words, even though this oil is several decades old, it would be fine to use in your F150 tomorrow.

Okay, ten old oils is all we can do for this article. Fortunately the next installment will contain such gems as old versions of Amsoil, Castro, Sinclair, Amoco, Lucky Strike, Union 76, and more! Tune in next time for the next installment of the eBay oils!

By |2024-09-19T10:11:13-04:00July 20, 2023|Articles, Gas/Diesel Engine, Marine|Comments Off on The eBay Oils (Part 2)

The eBay Oils (Part 1)

We were visiting my inlaws last November and needed some oil for my Passat. It just starting to clatter a little on start up and when I checked the oil, it was down two quarts. The clatter sounded something like “Sell Me” in German.

Anyway, while searching for some make up oil (my father-in-law Lee had two quarts of my favorite—Super Tech), I came across an old can of Pennzoil ATF. By old I mean it was a round can made of cardboard, like a Crisco can. It brought back memories of helping my Dad change oil when I was seven or eight. (My job was jabbing the pour spout into the top of the can.)

Lee said he bought it for an old 1984 Buick LeSabre. That was the last car he owned that leaked oil and when that car was gone, he was left with half a can of ATF. Working in an oil lab, I was intrigued by what was in it. So Lee let me have the quart because he would never need it again.

When I got back home, I started looking at old cans of oil on eBay and found a lot. It turns out these are fairly collectable, and I found roughly 300 unopened cans for sale, of all different types and years. I decided that in the interest of science, Blackstone should buy some of these and test them to see what was in them.

Now, you may think I’m crazy because once you open an old can of oil like that you ruin the value of it, but I was prepared to make this sacrifice for the good of the oil analysis community, and plus, Blackstone was buying, so it really didn’t bother me too much. If you think about it, how lucky can you get to be able to buy little time capsules of a product and test it? Can you by beer from 30 years ago and still drink it? I guess, but chances are it’s long gone bad. How about a 30-year-old can of sardines, or a 5-year-old one for that matter? No way. So, I would really be a fool not to try this and see what shows up.

One thing led to another and before I knew it I had bought 28 cans of old oil and spent almost $1,000. Pretty soon these oils started rolling in and I experienced a little buyers remorse. Did I really need to buy all this? What was I going to do with the cans? Once you open a can of oil, it’s almost impossible to seal up properly. Would there be anything to even see in these samples? And, does oil go bad? We get this last question all the time, and my answer has always been no, but I was dealing with oils from the 1930s,1940s, and 1950s here–really old stuff. Maybe all the additive in there (if any was even used) would settle out and there wouldn’t be anything for us to read. Fortunately, I had bought some oil that would help answer that.

Shaken, not stirred

Before I did any testing, I wanted to see if I would need to shake these oils up. If the additive had fallen out of suspension, then all of these old cans would need to be shaken before I even opened them. Ideally, it would be great to have two oils of the same batch, so I could run one unshaken and run one shaken and see what type of difference shows up. That’s where my two antique vintage Havoline Texaco all-metal cans came into play. “SAE 20-20W” is stamped on the top of the can, and the text on the back says, “For API engine service classifications MM, MS, DG, and DM.” It also assured me that it’s “The finest engine protection in the world.”

I bought these two for $25.00 total, and going by what looks like a date on the can, I think they were from 1968. They were from the same seller and looked exactly the same. Chances are good they came from the same case someone bought years ago and they have been sitting on the shelf even since.

I decided to run a test. I would take one to the local hardware store (www.doitbest.com) and have them put it in the paint shaker for five minutes. Then I would crack them both open, test them, and see what differences showed up. You can see the results in Hav No Shake and Hav Shake.

To my surprise, there was actually more of some additive in the oil that I didn’t have shaken. Also, the additives really weren’t that different from what we see in today’s oil. The oil was supposed to be a straight 20W and it was. Also, it had a strong TBN, so the additive that was present was still active.

About the only unusual thing was that phosphorus was higher than zinc. Those two elements are normally from the ZDDP additive, but maybe there were using a different formula back in 1968. It’s hard to say, but from that test I learned that when it’s done right, the additives actually become part of the oil during blending and time/gravity alone won’t cause them to separate back out.

So that settled it. I didn’t need to shake all of these oils and could just start running them. That’s good because some of these old cans were bound to break open during shaking and spray oil all over Norm and his paint department.

But is it still good?

However, that really didn’t get down to answering the question: Is this oil still good to use? For that, I was going to have to run another test.

Of all the oils I bought, one of the most expensive was very rare—according to the seller, antique Renuzit Certified, Premium Quality 2500 Mile oil. Not only does this oil offer the ability to run the oil 2500 miles in between oil changes (“Cut your oil bills in half!”), but it claims to provide a longer engine life, smoother motor, stronger oil film, and best of all, “a faster getaway.” They don’t actually advertise it as the best oil for bank robbers, but they should have.

It cost $75.00 + $25.00 shipping, but I got a whole gallon of it. Unfortunately, the can had some rust on the bottom of it and it started leaking during shipping. The good news was, I now needed to do something with this oil and I wasn’t going to dump it in a waste barrel. So I am going to actually run this in my engine. Not in my Mini (it’s still under warranty), but my trusty old GM 350, rebuilt twice by yours truly.

I know what you are thinking—this SOB is out of his mind!—but don’t try to talk me out of it. I’m going to run this oil and decide once and for all if running old oil really hurts anything. Will my engine blow-by and leave me stranded on the side of the road? Will the seals start leaking like mad a leave a slick of oil behind for other cars to slip on and spin off into the ditch (a la Spy Hunter)? Will this be the end of my beloved 1984 Chevy Custom Deluxe? Well, like the monkey said after he shit in the corner—that remains to be seen!*

Castrol with Tungsten

My first purchase was Castrol with Tungsten. Tungsten! What the hell? Since when did they start putting light bulb filaments in oil? Or maybe a better question would be, “When did they stop?” The bottle was partly in French, so I’m guessing it was from Canada, and that makes sense; the oil blenders up there will put anything in the oil and if the engine breaks, they just blame it on the cold. (Just kidding, Canadians! You know we love you guys.) I had to buy the single element standard to run Tungsten and set our spectrometer to run it, but after a little messing around, we got some results .

Sunoco DX Diamond motor oil – API SB

After seeing Castrol with Tungsten, I was ready for anything, but when I saw Sunoco’s Diamond oil, I didn’t really think they put diamonds in there. That would be one expensive additive. I did want to see what was in this SAE 40W oil though.

The case says is has an API rating of SB, which was used from 1930 to 1963. Several websites state that this oil can cause equipment harm. All I can say to that is, too bad I don’t have five quarts of this stuff, because I love a challenge. It doesn’t look so harmful in the oil analysis. The viscosity wasn’t quite in the 40W range and it didn’t have much in the way of detergent/dispersant additive present, but then again, it does state on the can that it is “Recommended for vehicles that do not require detergent oil.” Sometimes those oils don’t have any additive at all, but there was quite a bit of phosphorus and zinc here (figure 4).

K-Mart 10W/40 Motor Oil (API SE) & DEXRON ATF

Back before Wal-Mart dominated the world, there was K-mart, and when I was in 4th grade, there was no greater crack on someone than “You buy your underwear at K-Mart.”

Well, I wonder what those boys would say if they found out I bought my oil at K-Mart too. The motor oil is listed as Deluxe and it says on the side of the can that this is specially blended multi-viscosity oil containing the finest approved additives and base oils. So you can’t go wrong there, right?

Looking at the results, I’d say this oil is indeed deluxe. The viscosity is pretty strong for a 10W/40, and the additives would be suitable for diesel use. The oil does have a CC rating as well as an SE rating, and those put the date of this oil as being made sometime in the 1970s. The ATF has a standard additive package until you get down to barium. That’s not used much anymore. See figures 5 and 6 for the analyses.

Valvoline SAE 20W – API SB

The big marketing claim for this oil says it “Contains Miracle ChemAloy.” Miracle! Really! Does the Pope know about this? There were no miracles in the additive package that I can see, but maybe that’s the miracle of it—you can’t see it, but it’s in there and it works. This oil doesn’t have much of a TBN because it doesn’t contain much calcium, but the old stand-bys of phosphorus and zinc are there, and at pretty much the same levels we see today (figure 7).

Harley-Davidson Premium Grade Motorcycle Oil (SAE 40) 75-P

This can caught my eye because it reminded me of Evel Knievel. In fact, the logo on the can is the same as what is on Evel’s website, so the two were heavily linked back in 1970s.

What’s interesting is that Harley-Davidson actually came up with their own oil weight specifications. This can is 75 Medium Heavy and is for use in all motors at temperatures above 40°F. They also made 58 Special Light, which is good for temperatures below 40°F, and 105 Regular Heavy—good for all motors operating under severe conditions at high (?) temperatures. Apparently, it was up to us to decide what high temperatures are; also, neither the 75 or 105 was “special.” I’m sure the special label added some extra cost and that made it special to Harley-Davidson.

Looking at the report, you’ll see this was a 40W oil and WOW look at the barium. That isn’t used much anymore and was likely some sort of detergent additive (figure 8).

ARCO Graphite SAE 10W/40 (API SE-CC)

After seeing the word graphite in the name, I had to check this stuff out. True to its label, there was a lot of graphite in the oil (figure 9), and if you’re the kind of person who likes clean oil on your dipstick, this wasn’t the brand for you. Graphite is known as a lubricant, but I wonder how this stuff did in engines. Looking at the report, you can see the graphite at the insoluble reading of 0.5%. That’s extremely high for virgin oil, so the stuff doesn’t stay in suspension very well. On the plus side, the can says this oil provides

  • Improved gasoline mileage
  • Reduced piston ring and cam wear
  • Easy low temperature starting and excellent lubrication at low and high operating temperatures

The oil is also “Patent Pending” and I’m wondering how that application is progressing down at the Patent office these days.

In Parts 2 and 3 of “The eBay Oils” we’ll be looking at old cans of Amsoil, Mobil, Valvoline, and more. Look for the next installments this summer!

By |2024-09-19T10:10:17-04:00July 19, 2023|Articles, Gas/Diesel Engine, Marine|Comments Off on The eBay Oils (Part 1)

Ryan’s Cholesterol

A few years ago I went to our family doctor for a checkup. For most of my life I’d never been one for getting check-ups, but now my insurance company pays for a yearly visit, so I decided to start.

After all the basics, the doctor suggested I do a blood test, because I’m “getting old” (almost 40!?). So after fasting for 24 hours to make sure nothing I ate would skew the results, I headed to their lab to get my blood drawn.

You can imagine my dismay when the nurse called a few days later with my test results — high cholesterol! My initial reaction was shock, followed by a realization that maybe I am indeed getting older.

The nurse said my total cholesterol read 203 and that the doctor wanted me to change my diet and start taking the drug Lipitor. Again, more shock followed by a little confusion as to what exactly 203 meant, and then a wave of depression at the idea of having to take a drug for the rest of my life, along with quitting eggs, butter, and bacon. “Fortunately,” the nurse continued, they offer free Lipitor at the local supermarket pharmacy, like that was supposed to make everything all better.

After a few letting this all sink in, I decided that I was not indeed getting older. In fact, I’d wager that I was the healthiest SOB my doctor had seen all month (based on the state of the patients in her waiting room).

Looking at data

Also, given the fact that I look at data all day long, I began to wonder about the 203 reading. What’s average, what are the units on that, and what was my average cholesterol reading? Maybe I’ve always read high.

After a little more thought, I decided to just ignore my doctor and get retested to see if I can get a trend going. My thinking was, maybe high cholesterol is kind of like high iron in your oil. We normally say that just one high reading isn’t much of a concern. Maybe it was higher before but it’s headed down now, or maybe this level is just normal for you and the way you operate your engine. A trend gives you far more information that just one bad reading. We usually wouldn’t suggest any major changes after one just one high reading, so I was a little disheartened that my doctor would prescribe a lot of life-changing measures based on one test. My course of action would be to get more information about it and check back to see if the high reading was a one-time occurrence or not.

So I had my blood tested again about a month later to see if the first test was accurate. Unfortunately it was, but still, that made me feel a little better about the repeatability of the lab and that test itself.

The vitamin D cure

As luck would have it, that same month I attended a lab training session in Columbus, Ohio at Mettler Toledo (they make an awesome auto-titrator if you’re even in need).

During dinner one night with the other class attendees, we got to talking about Vitamin D and its relationship to cholesterol. My classmate was in the business of testing for Vitamin D levels in food and said that there is a direct relationship between the two. As it turns out, the more Vitamin D you get, the lower your cholesterol goes. And what’s more, Vitamin D is free to us all, being produced naturally by your skin when it’s exposed to sunlight.

This really got me thinking — my first and second blood tests were taken in during the high of winter in the Midwest. A person doesn’t get much sunlight in the winter (at least in Indiana). So maybe if I checked my cholesterol again in summer, it would improve. This started me on a quest to get my blood tested again that summer to see if I could indeed confirm that there was a relationship between Vitamin D and cholesterol.

At the start of September, I called my doctor and requested another blood test, and this time I wanted Vitamin D added as well. After a few days the nurse called with my results. It turns out my Vitamin D level was low at 30, and she wanted me to start taking a supplement to see if I can bring that up (again with the knee-jerk reaction to one reading).

“How about my total cholesterol?” I asked. “Oh, that’s fine at 156.” she stated. This was an eye-opening test because it proved that my cholesterol level did indeed change significantly and I didn’t have to change my diet or take any drugs to artificially lower it.

This also brought up a mildly chilling realization. Suppose I started taking a drug to lower my cholesterol back in February and then had it tested again in September. My cholesterol would have read lower, but everyone would have pointed to the drug as the reason and I’d be stuck taking it for life.

After-market oil additives are a parallel to this in the oil analysis world. A lot of people start to use an additive and after several years start to think it’s the reason their engine is running well. When in reality, chances are very good the engine would still be running fine had they not used the additive.

Trends are key

All of this started back in 2013 and I have accumulated a lot of data since then on my cholesterol and Vitamin D levels. Being in the lab business, I wanted more data before I made any hard and fast statements and I’m still not ready to say one way or the other that the Vitamin D and cholesterol are related. I’m not advocating that you ignore your doctor’s advice (that’s a Stark family virtue), but I am saying that as far as testing goes, it’s not very often that you need to take action just on one bad reading. Trends are important when analyzing data, so be sure to get them even if it takes a little pain.

By the way, during all of this blood testing, I found myself longing for a lab where you could walk in and easily get blood work done without a doctor’s order, one that would send you your results in a nice, easy-to-read format, with an explanation of the data in plain English.

Also, the report would show you an average so you could get an idea about how high or low a reading might be. Whoever could come up with this type of medical lab in real life would be sitting on a gold mine. Now, you may ask, “Why don’t you start one, Blackstone?” and the answer to that is easy—we’re too busy testing your oil.

_______________________

Cholesterol follow-up

Back in August 2015 I wrote about cholesterol testing and its parallels to oil analysis. I’m sure you’re all wondering how my health has been, so this is a follow up to that. In the article I stated that there appears to be a connection between Vitamin D and cholesterol and I am here to tell you that I might have been wrong.

My final blood test was on August 7, 2015 and at the time I was taking a Vitamin D supplement to see if it would lower my cholesterol. Well, the supplement worked: my Vitamin D increased to 33, which was an all-time high; however my cholesterol also increased. So barring any sort of lab error that might have occurred, I’m not sure if there is a conclusion or not.

That article received a lot of feedback and I enjoyed all of the comments from our customers, but was especially intrigued by one e-mail I received. He pointed me towards the book “The Great Cholesterol Con,” by Malcolm Kendrick, and while it wasn’t the easiest read I’ve ever come across, it did change my life.

The books states that cholesterol levels aren’t related to heart disease at all and that I should eat anything I like. Well, I’m 43 now and can make up my mind on what I do, and I have to say, I really liked the sound of that. It was the first time I had ever heard anyone say that your diet isn’t related to heart disease and he had that data in his book to back it up.

I’ll admit I never read any of the studies he talked about, though apparently they are all available on the Internet. As for what causes heart disease, well, I won’t spoil the book for you ¾ ha ha just kidding, I’ll spoil it: stress! Reduce that in your life and you’ll be better off. Who can argue with that? Plus now that I don’t have to feel bad about putting butter on my toast, my life just got less stressful.

_______________________

Yet another follow-up

A few years ago I wrote an article about how trends in blood tests were just as important as trends in oil analysis. This medical talk spurred a lot of comments and advice which I greatly appreciate, though surprisingly enough, not too many of you seemed concerned about my suicidal-scorn for statin drugs. Still, I’d like to thank all of those was responded and I’d like to pass on one bit of great advice from a doctor/pilot. His best advice for living a long healthy life: Stay off ladders.

By |2024-09-19T10:15:06-04:00July 19, 2023|Articles, Gas/Diesel Engine, Marine|Comments Off on Ryan’s Cholesterol

Blackstone and the Post Office

(TL;DR: You can use the labels that are on your kits now, but if you’d like new ones, you can print one here.)

“I am FED UP,” said the customer on the phone. “Do you even have my sample? I mailed it a month ago.” I looked up his tracking number and he wasn’t exaggerating – he mailed it September 15, and we had just received it that day, October 15. Sound familiar?

Why is it taking so long for samples to arrive? And what are we doing about it? Read on, Blackstone fans. Have we got a story for you.

The Post Office makes some changes

“I think the post office isn’t charging us enough.” Ryan Stark, Blackstone’s president, and my brother and business partner, said to me one day last November after reconciling the checkbook. He’d noticed that for the last few months, the amount we were paying in postage had dropped significantly.

Stick with me, this is all going to tie together.

Last summer, just as we were all realizing the pandemic was not simply going to disappear, I learned the post office was ending their Merchandise Returns program. Because our samples came back to us on MR labels, we needed to create a new one, so I had my printer start working on it.

A major part of that process is getting approval from the USPS at various points along the way. And that’s where the process slowed…then slowed down some more…and then, like molasses on a winter sidewalk, came to a creeping halt.

We called USPS. How’s the label going? No reply. We emailed. How’s the label coming along? Nothing. Time passes. Months go by. Sometimes we’d get a reply – “We should have an answer for you soon!” But then…nada.

Back to the money

Meanwhile, the issue of not paying enough postage was still a problem. What do you do when you think the USPS isn’t charging your business enough? You call them – so I did.

I first contacted my local post office – the ones who deliver us samples every day, the ones who know who we are and what we do. “I think we’re not being charged enough,” I explained. “Nope, that’s not me,” she said. “They take care of that in Indianapolis now.” She gave me a number, so I called down to Indy. “Huh,” the Indy person said. “Let me look into it.”

Reader, you can see where this is going.

I got nowhere in November, so I called again in January. “Hey!” I said. “I still don’t think we’re getting charged enough!” “Hmmm” said the voice on the line. “Let me ask my supervisor about that.”

Time marches on. After calling and emailing various USPS representatives throughout February and March, I got fed up in April and sent an email blast to every single USPS contact I had, including the ones in Washington, D.C.

That one got some attention.

They started looking into what was going on, and to make a long story short, the issue culminated in a conference call with several USPS bigwigs. “Well,” said Bigwig #1, “you owe us (insert a huge amount of postage here. Nope, it was more than that).

It turns out that when the USPS stopped their Merchandise Returns program, our local post office stopped charging us for our incoming samples. We were still being charged for outgoing mail, but we hadn’t paid postage on incoming samples since the MR program ended in August.

After much gnashing of teeth and some heated words on my end (would they ever have caught the problem if I hadn’t kept after them? We’ll never know), we settled on a plan to pay the outstanding postage.

As part of this reconciliation, one of the USPS Bigwigs suggested we have samples returned to us in a Tyvek envelope, to help catch spills. Well, oil spills aren’t really the problem with getting samples delivered, but I tucked the idea away for the future.

Back to the labels

Meanwhile, the new label still had not been approved. And people still needed kits. While all this was going on, we continued to print and send out hundreds of thousands of old labels on kits. What choice did we have? Now those old Merchandise Return labels are now on kits that are sitting in garages, hangars, and marinas all over the country. This is our old label. Don't use it!

So when did we get it resolved? We officially started printing our new, USPS-approved labels more than a year after the old label was officially discontinued. The thing is, the post office reassured me that it would be fine to continue to use our old label – we would just have to pay more when people returned them.

Which is fine. Fine, fine, fine. Except, for some post offices, it’s not so fine. Most of those old, Merchandise Return-labeled kits get here no problem. But occasionally, a post office will hold on to it and not deliver it because it’s the old label, even though they said we could keep using them.

At this point, there’s nothing we can do about the thousands of old labels that are in circulation except try and get the word out. So that’s why you’re reading this. If you have old labels on your kits (they say Merchandise Return right on them), click here to ask for new ones. We really do want to receive your samples. And we don’t want you to have to wait for a month to get your results.

But wait, there’s more!

So while all of that was going on, Travis – a long-time Senior Analyst-turned-coder – had an idea. “What if,” he said to me one day, “we do a test to see if putting samples in a Tyvek envelope helps with the return postage time?” Because although oil spills aren’t a significant problem, it does seem to be a problem that the mailer is 1) small, and 2) clearly headed for a laboratory. Putting the oil into a Tyvek envelope might solve both issues. So we started a test – for one month, we sent all outgoing kits with a labeled Tyvek envelope for returning the sample to Blackstone.

The results were immediate and striking: this was a winner. We didn’t even run the test for the full month. The data Travis put together showed that return times were cut in HALF (from an average of 8.74 to 3.48 days) when samples came back to us in the Tyvek envelope. (See the sidebar.) We stopped the test and immediately started including Tyvek envelopes with each kit order, for return samples.

USPS supporters

Despite the problems, we are proud supporters of the United States Postal Service. No other carrier offers service to every single part of the US, no matter how remote. Lots of people don’t have access to UPS or FedEx, though if you want to use them to send in your samples, that’s absolutely fine.

The changes we’ve made to our label and the return package are already paying off in getting samples to us in a timely fashion. If you need new return envelopes and labels for your kits, let us know – we’re happy to send them out!

______________________________________

Update! The Post office has discontinued their First Class Return labels (my new mantra: change is good…change is good). We are now using Ground Advantage labels. All the same things in this article still apply. You can use the First Class return labels, but your sample will arrive faster with a Ground Advantage label. You can print one off right here.

By |2024-09-19T10:15:59-04:00July 19, 2023|Aircraft, Articles, Gas/Diesel Engine, Industrial, Marine|Comments Off on Blackstone and the Post Office

The Acidity Question

Every now and then you hear about oil becoming acidic and causing internal corrosion in an aircraft engine. Usually that goes along with the oil absorbing water and then forming acids, but I’ve always disagreed with this statement.

It’s a well-known fact that corrosion is a problem for a lot of aircraft engines that don’t see much use, but is it really acidic oil that’s causing the corrosion, or simply bare metal parts being exposed to the atmosphere? So I decided to run some testing to see what I could find about acidity and aircraft oils.

Now, think back to high school chemistry. Remember learning about acids and bases? Normally with something like water, you measure the pH to determine how acidic or basic a liquid might be. A pH of 7 is neutral, lower than 7 is acidic, while higher than 7 is basic.

The problem with oil is, you can’t run a pH on it directly. So instead, we have the Total Base Number (TBN) and Total Acid Number (TAN) tests.

These are fairly simple tests and the basic principle is this. After you mix a measured amount of oil with some chemicals, you can run a pH on those chemicals. But that doesn’t equate to the TBN or TAN.

To get the TBN you add acid to the chemical mixture until it reaches a pH of 4. To get the TAN, you add a base to the mixture (in this case, potassium hydroxide) until the pH reaches 10. (You might wonder why we don’t just report the pH of the chemical mixture and have that be the end of it, and the answer to that is unknown, at least to me.)

The TBN test

The TBN test is commonly done on automotive oils, but not aircraft oil. That’s because the TBN always reads 0 or close to it with aircraft oil.

Automotive oil has a lot of additive packed in there and that is what the TBN reading is based on. That additive makes the TBN increase. Oil salesmen use the TBN test to help sell their oil, with the idea being that the higher the TBN, the better the oil. But the TBN is really just a testament to how much additive the oil starts with, not necessarily how well the oil will work in any given engine.

You might wonder why aircraft oil doesn’t use the same additives? It’s because the additives used in automotive oils aren’t ashless. The additives present in all aircraft oils have to be ashless, meaning when the oil burns nothing is left. This is why it’s a bad idea to use anything other than aircraft oil in your aircraft engine.

The TAN test

The TAN test is commonly done on industrial oil like hydraulic fluid. There is a theory that when oil becomes acidic it will accelerate wear and cause all kinds of problems, but that’s just a theory — and a pretty weak one in my book.

When most people think of acid, they might think of something like acid reflux and heartburn. Or maybe sulfuric acid burning a hole in their clothes, but that gives acids a bad rap. If it weren’t for acid, your food wouldn’t get digested and we’d be without a lot of very important chemical compounds. What’s more, there is no known correlation between acidic oil and higher wear that I know of.

It is commonly talked about that water in oil will cause it to become acidic, and maybe it will if the water has something to react to. But with aircraft oil, it doesn’t. The additives present aren’t sulfur-based like they are with automotive oils, so when water gets into oil, it usually just stays there until the oil gets hot enough to cook it back out.

Testing the theory

So for this newsletter article, I decided to run some TAN tests on various aircraft oils and see what shows up. Virgin aircraft oils usually have a TAN in the range of 0.4 to 0.8. It’s important to know where the TAN starts out, so you know how acidic the oil has become after use. (You’d think that oil starts out with a TAN of 0.0, but usually it does not.)

For the used oil data, we tested the TAN on 63 random aircraft samples.

Acid Chart

The average TAN reading for those samples was 1.3. That might seem like a fairly large increase, but in the oil analysis world, 1.3 is considered a low acidity reading for any type of system. A reading of 3.0 shows some acidity and anything over 4.0 can be considered fairly acidic.

The highest TAN reading we found was 2.3, but in our testing any readings over 2.0 were rare. In fact, only three samples read higher than 2.0 and none of those had water present, but two were considered inactive. Five of the samples we tested did have a trace of water present, but their average TAN was just 1.1, so we didn’t find any correlation between water and a high TAN.

Acid Chart 2

So how about inactive engines? Two samples that were inactive did have a TAN of over 2.0, but they were the exception, not the rule. We had 11 samples in our test run that were considered inactive, but the average TAN of those was just 1.2.

Based on this testing, it doesn’t look like oil acidity is really a factor at all. Does that mean you shouldn’t worry about inactivity? No — we’ve seen too many examples of poor wear from inactive engines to say that’s not a problem. What it does mean is that in our opinion you don’t need to worry about your oil being acidic. And in life, one less thing to worry about is a good thing!

By |2024-09-18T14:08:24-04:00July 18, 2023|Aircraft, Articles, Gas/Diesel Engine, Marine|Comments Off on The Acidity Question

Oil Filter Inspection

Routine oil filter inspections are a useful tool in the aircraft owner’s diagnostic toolbox. We use spectrometers to test for metals on a microscopic level, smaller than you can see and smaller than an engine’s oil filter will remove from the oil. Larger pieces of metal that might not show up in spectral testing will be trapped in the oil filter. By checking the filter at each oil change, you’ll get a good idea of what normal is for your engine and be able to quickly identify any changes that might be the early signs of a problem.

Cutting the housing

In order to inspect the filter pleats, they must first be removed from the housing. While a hacksaw or angle grinder might get you there, we strongly recommend using a filter cutter to remove the lid of the filter housing. A filter cutter cleanly cuts the robust steel housing without producing metal shavings that might find their way onto the filter pleats you are about to examine. Plus, who doesn’t like a good specialty tool?

The AFC-470 from Airwolf Filter Corp is our go-to cutter here at the lab: http://www.airwolf.com/aw/products/oil-filter-cutter. This tool fits the filter from any Lycoming or Continental engine we’ve come across. Airwolf also offers a smaller cutter for Rotax engine filters. For those who might also want to examine filters from other engines, like their car or truck, filter cutters that cover a wider range of filter sizes are available from speed shops such as Summit Racing. (https://www.summitracing.com/parts/sum-900511)

  1. Secure the filter lug in a bench vice. If the filter doesn’t have a lug, you can secure the lower section of the filter housing in the vice – just be careful to not crush the housing or it may trap the internal cartridge with the filter pleats. Poking a hole in the housing to allow oil to drain can also trap the internal cartridge, so we recommend avoiding that as well.
  2. Place the filter cutter on the filter and gently tighten the cutting wheel. We like to take a conservative approach in cutting the housing, progressively tightening the cutting wheel over a few rotations, rather than trying to cut through in one pass.
  3. Once the lid has been cut, the cartridge with pleats can be removed from the housing. It is also good to inspect the inside of the filter housing for metallic particles and other debris that may not be trapped in the filter pleats.

Removing pleats from the cartridge

You have two options at this point. You can use a solvent such as mineral spirits to wash debris from the pleats, leaving the cartridge assembly intact. The resulting solvent/debris slurry is then filtered for examination. In our experience, this flushing method may not always remove all of the debris from the filter pleats. We prefer to cut the filter pleats from the cartridge for examination by the following method.

Disclaimer: There is the potential to guillotine a finger or two during this process. Proper technique greatly reduces the chances of extensive cursing and an unplanned trip to the local emergency room.

  1. Place the filter cartridge horizontally on the bench and hold with your non-dominant hand. Locate the filter pleat seam that adjoins the two ends, usually with a metal band or glue.
  2. Hold the knife with your knuckles against the bench for stability. Starting at the seam and using only downward force, cut along the edge of the pleats opposite the side you are holding. We prefer to rotate the pleats into the knife blade, firmly holding the knife in a fixed position. This method, when done properly, protects your off-hand’s fingers from the knife blade, where the knife moves downward into the bench if it were to slip.
  3. Flip the cartridge around and repeat steps 1-3 on the other side. You may have to make a few passes on each side to fully cut the pleats. Using a new razor blade helps.
  4. Again locate the seam where the two ends of the filter pleats are joined together. Cut across the pleats on either side of the seam.
  5. The pleats can now be removed for examination. If properly cut, the pleats will come out in one long piece with a clean edge on both sides.
  6. The pleats will still contain a fair amount of oil at this point, making it difficult to see metallic debris. If time allows, you can place the pleats on paper towels to drain overnight. You can also squeeze the pleats like an accordion and mop up the oil that squeezes out with paper towels.

Inspecting the pleats and basic identification of common particles

Stretch the pleats out under a bright light or outside on a sunny day. Larger metal slivers will be obvious, but you may have to look quite closely to identify smaller particles. Here at the lab, we have a dedicated space with clamps that stretch the filter pleats out in one long section. You can improvise in the shop by placing something heavy on both ends of the pleats.

  • A strong magnet (covered with a plastic baggie or cling wrap) will remove ferrous particles from the pleats. We also suggest checking the pleats themselves with a magnet. Severe steel wear may generate enough small ferrous particles to make the pleats react to magnet.
  • Aluminum has a bright, silver appearance and will not react to a magnet.
  • Copper-containing alloys, such as brass or bronze, vary from a light straw to copper color and will not react to a magnet.
  • It is also common to find carbon, especially in the filters from turbocharged engines. Carbon is black, hard particles that can be broken apart between your fingers. A large amount of carbon might indicate excess blow-by, but what counts as excessive is unique to each engine. Regularly checking the oil filter will give you a good idea of how much carbon is normal for your engine. You might also find carbon with steel embedded in it, so it is good to check carbon particles with a magnet.
  • Small bits of sealer material may also be found, especially after repairs. We generally don’t worry about this sort of non-metallic debris.
  • You might also find lead deposits from fuel blow-by. These particles have a bright, foil-like appearance that can look very much like a metallic wear particle. These deposits can be distinguished from metallic wear by their soft and “smudgy” texture. It is worth mentioning that these deposits are not lead from the wearing surface of a crank or camshaft bearing.

Steel sliver

Aluminum flakes under magnification

Brass/bronze under magnification

Carbon deposit

Sealer material

Lead deposit

Evaluating Filter Debris/Conclusion

In some cases, a filter will contain so much metal that a looming problem is almost certain. But it is more often the case for the findings to land in an ambiguous gray area, where the severity of the metal is situationally dependent. You can expect to find some metal and other debris in the filter from a fresh overhaul, for example, where the same findings would be unusual in a routine filter inspection for that same engine at 500 hours since major.

Lycoming offers good guidance on the identification and evaluation of filter debris in Service Bulletin 480F. In our opinion, a lot of the information in that bulletin can also be applied to Continental engines. Blackstone also offers a filter and filter screen examination service as a compliment to oil analysis – but we recommend doing routine filter screenings yourself to get familiar with what’s normal for your particular engine. Save your money for flying — check your filter yourself!

Further Reading

https://www.lycoming.com/content/suggestions-if-metal-found-screens-or-filter

By |2024-09-18T14:16:01-04:00July 18, 2023|Aircraft, Articles, Gas/Diesel Engine, Lab Tests|Comments Off on Oil Filter Inspection
Go to Top