TBN/TAN: Do You Need One?

“Do I need a TBN?” It’s a question that comes up a lot. The TBN is a test we do on engine oil, while the TAN is meant for transmissions and other gear lubes or hydraulic oils. These tests are widely discussed on internet forums, where facts and misconceptions can be hard to distinguish. So let’s dig into the science behind them!

What is a TBN or TAN?

The Total Acid Number and Total Base Number are ways to determine how acidic oil has become (TAN), or how effectively it can neutralize the acids that form from combustion and other factors (TBN). An increasing TAN indicates more acidity, while a decreasing TBN shows an oil’s acid-neutralizing additives are being used up. You may remember the pH scale from science class. pH is a more familiar measure of acidity in everyday life. So why don’t we use pH on oil?

pH stands for “potential of hydrogen” and measures the flow of hydrogen ions in a water-based solution. pH doesn’t apply to oil because these ions can’t flow through oil – it’s a poor conductor. That’s why oil is used as an insulator for transformers and other applications that call for interrupting the flow of electrical current. Fortunately, we can use titration to get around this obstacle. Titration is used to determine the concentration (in this case, the acidity level) of an unknown solution (oil) by exposing it to measured quantities of a known solution (acid or base).

Running the tests

We start by mixing one gram of oil with a happy blend of toluene, chloroform, isopropyl alcohol, and a splash of H2O. (Kids, don’t try this at home!) The solvent breaks down the oil into a solution that is a better conductor, so we can measure the pH. The next step differs slightly for the TAN or TBN.

For the TAN, we add a cocktail of chemicals – let’s call it Bruce – to the toluene solution, a little at a time. This continues until the pH reaches 11. The lab techs then use an equation to calculate the TAN from the amount of Bruce added to the oil-toluene blend.

The TBN follows a similar methodology, except the solution added is more acidic – more of a Boris than a Bruce.

The end goal for the TBN titration is a pH of 3, and as with the TAN, the lab people are doing some math to transform the amount of Boris added to the oil into your TBN number.

Why get a TBN?

As the oil circulates through the harsh environment of a hot, running engine, combustion causes acids to form. These acids can cause increasing wear and corrosion. To prevent this, the oil manufacturers add detergent additives to the oil, which help it buffer those acids and stabilize the oil’s pH. The higher the TBN, the better your oil can resist becoming acidic. That’s the main reason to check the TBN. It’s a helpful data point if you want to extend your oil change interval beyond manufacturer recommendations.

The TAN does essentially the same thing, but we use the TAN on oils that don’t have detergent additives (like hydraulic oil and ATF). Some industrial equipment manufacturers will set standards for when to change the oil based on the TAN.

Which oil has the highest TBN?

The TBN is mainly based on the amounts of calcium and magnesium (detergent additives) in the oil. Oils with more of those additives typically have a higher starting TBN, and those with less will rank lower on the list. Is more better? Not necessarily (and we’ll get into that a little later). Meanwhile, Figure 1 lists a slew of virgin engine oils and their average starting TBNs, from highest to lowest. The progression isn’t perfectly consistent, because we don’t test for every conceivable substance the oil manufacturers might include that determines the TBN. chart showing the TBN for various types of oil

As you probably know, the TBN drops pretty fast when you start using the oil. Then it levels out and drops more slowly, the longer the oil is run. Figures 2 and 3 show two types of Mobil and how the TBN tends to fall as acidic substances start to “use up” the detergent additives. That’s what they’re there for, and we consider any TBN over 1.0 sufficient, while a TBN of 2.0 or greater is ideal when choosing to run the oil longer than you currently are. Note that ppm calcium and magnesium stay roughly the same – it’s their ability to neutralize acids that decreases.

chart showing the TBN and TAN of Mobil 1 5W/30 at various mileage intervals

Figure 2: This oil has an average starting TBN of 7.5. Note the roughly inverse relationship of the TBN and TAN readings; as the TBN decreases, the TAN increases, as less “active additive” is available to neutralize acids.

chart showing the TBN and TAN of Mobil 1 Annual Protection 0W/20 at various mileage points

Figure 3

Figure 3: This oil has an average starting TBN of 7.9. The chart shows the same fairly predictable drop in TBN as miles increase. Interestingly, the TAN is less predictable, probably due to factors outside the scope of this newsletter.

Is more better? A look at two novel blends

It’s easy to see how you might feel like you want an oil with a starting TBN that’s as high as possible. But Figure 1 makes it clear that oils with all sorts of starting TBNs are available. Did the manufacturers at the low end of the scale just cheap out on additive? Not at all. Oil manufacturers have to cater to an array of unique engine designs, operating conditions, etc. As technology evolves, so does oil.

Joe Gibbs

See, for example, Figure 4, which lists a few different samples of Joe Gibbs Driven D140 oil. It had the lowest average starting TBN (4.4) thanks to fairly low levels of calcium and magnesium. This left the TBN between 2.0 and 1.0 after just 5,000-6,000 miles. But the engine that produced those numbers was a Porsche 911 that had excellent wear trends (see Figure 5). This oil is specifically formulated with lower calcium and higher moly to combat low speed pre-ignition and reduce abnormal combustion and wear. While we can’t say whether this oil really does reduce LSPI, it seems to work as well as others do and we see no problems with the novel additive blend.

chart showing TBN and TAN of Joe Gibbs Driven 0W/40 oil at various mileage points

Figure 4

Oil report for the 5 samples of Joe Gibbs oil in Figure 4

Figure 5

Figure 5: Wear trends for the five samples in Figure 4 (and one additional sample, not included there because TBN and TAN were not requested). Wear is consistent over time and compares favorably to averages, despite the low TBNs.

Chevron Delo

Chevron Delo 600 ADF is another oil that breaks the traditional additive mold, and it’s fairly new to the market. The 15W/40 and 10W/30 formulations hold the 2nd and 3rd place spots for lowest starting TBN in Figure 1, which is surprising, since they’re formulated for diesel engines – diesel oil tends to have more dispersant additive than oil designed for gasoline engines (most of the oils in Figure 1 are gas engine oil). Figure 6 shows the Delo 600’s TBN reaching our “1.0 limit” starting around 9,090 miles. Chevron also had particular goals in mind for this oil – it uses “ultra-low ash additive technology” and is meant for engines with SCR and EGR emissions systems that need to meet state emissions standards.

chart showing calcium, magnesium, and the TBN of Chevron Delo 600 ADF 10W/30 oil at various mileage points

Figure 6

Figure 6: This oil had an average starting TBN of 4.7. The chart shows the low levels of calcium and magnesium that resulted in fairly low TBNs after typical oil runs for diesel engines.

Since additive packages tend to be proprietary and Chevron never did respond to my email, we can only speculate as to how the elements we find in our testing relate these constraints. Maybe such low calcium and magnesium reflect a reduction in calcium sulfonate and magnesium sulfonate (the compounds that register as calcium and magnesium). While these compounds work well as detergent/dispersants and their alkalinity helps buffer acids, their presence would also boost the sulfur content – a potential problem for emissions goals. But the additive package is unique in other ways too.

Oil report for a virgin sample of Chevron Delo 600 ADF 15W/40

Figure 7

Figure 7 is a virgin sample of Chevron Delo 600 ADF 15W/40. Note the high levels of molybdenum, potassium, and boron, and low levels of phosphorus and zinc, in contrast to the more typical additive package shown in the universal averages column. Moly seems to be providing most of the anti-wear properties that phosphorus and zinc ordinarily would. Potassium is noteworthy and caught our attention right away, since it’s one of two potential markers for anti-freeze.

We’re not certain what additive compound registers as potassium in this oil, but because potassium is alkaline, perhaps it performs some of the same functions calcium sulfonate and magnesium sulfonate do in more traditional additive packages.

Interestingly, even when potassium (and sodium, which is also alkaline) is truly from coolant contamination, it can skew the TBN. Figure 8 is an example of an engine suffering from coolant contamination, which is taking a heavy toll on the bearings and physical properties of the oil. An oil change (and probably major repairs) are needed, yet out of context, the 10.0 TBN looks great. But that doesn’t mean the oil is ready for more use; rather, coolant is skewing the reading. That’s why we never judge a used oil sample by a single data point!

Oil report for a used sample of Valvoline 10W/30

Figure 8

Figure 8 shows a sample of Valvoline 10W/30, which has an average TBN of 7.2 out of the bottle. The oil was used 3,000 miles in an engine with a major coolant problem, seen in very high levels of potassium and sodium, a thick viscosity, high insolubles, and high wear levels. The TBN is very high at 10.0, but that doesn’t mean the oil is ready for more use; rather, coolant is skewing the reading.

As for Chevron 600 ADF? The jury is still out on what kind of results this oil will produce over time, since most of the samples we’ve tested so far are from young engines going through wear-in. It will be interesting to see how these engines mature, but we suspect in the end, this unique oil will perform as well as any other in the most crucial ways: lubricating, cleaning, and cooling engine parts. We’ll just have to give it some special treatment on our end, to avoid false positives for anti-freeze, and avoid putting too much stock in “low” TBNs.

We hope you’re walking away armed with knowledge and a pretty good idea whether adding a TBN or TAN is going to serve your particular aims. If you’re wanting to extend your oil changes, go for it! If you just want a basic assessment of how your engine and oil are holding up, not to worry! We can provide that with the core tests in the standard analysis. Stay tuned for Part 2 next newsletter, where we venture into the lab, and learn about the effects of heat on TBNs and TANs.

By |2024-09-19T09:13:00-04:002023|Articles, Gas/Diesel Engine, Lab Tests|Comments Off on TBN/TAN: Do You Need One?

The Fuel Experiment

When I first started at Blackstone, one of the contaminants that intrigued me the most was fuel. I guess I don’t know why finding fuel in people’s oil surprised me. Maybe I thought fuel and oil were separated by a giant wall somewhere in the engine. Or maybe (probably) I really didn’t understand engines very well to begin with and that only served to fuel (ha!) my interest in the contaminant.

We test for fuel using the Cleveland Open Cup method. Basically, we record the temperature at which the vapors from the oil ignite. All oils have a specification for what the flashpoint should be. When it’s lower than that, it’s because a contaminant is present. About 98% of the time, that contaminant is fuel (sometimes a solvent or refrigerant will lower a flashpoint, but rarely in gas or diesel engines). Basically, the lower the flashpoint, the more fuel you’ve got.

We can accurately measure fuel down to less than 0.5%, so that’s the lowest fuel measurement you’ll see on your report. The upper limit of what we can accurately read is 10.0%. If you’ve got more fuel than 10.0%, you’ve got bigger problems to worry about than the actual quantity of fuel in the oil.

When the opportunity came up to write an article for the newsletter, I readily accepted and already knew I wanted to write about fuel. In fact, I was not just going to write about it–I was going to get to the bottom of it. I was going to discover what causes fuel dilution and what causes fuel to disappear.

The plan

The guinea pig was my trusty Kia Optima (2.4L, 4 cylinder). I use my Kia mostly as a daily driver, traveling about seven miles to and from work each way. I love to travel and occasionally I get in a trip to Wisconsin or Iowa. By the time I started my quest to debunk fuel, I’d done a few samples with my Kia and only a trace of fuel had ever turned up so I didn’t have any known fuel system problems to contend with.

I decided to take the highway route home every day to ensure that every day I would cook out any extra fuel that was present in my oil. My 40-minute drive consisted of some city streets with a few stoplights at the beginning and end of my trip, and mostly sustained highway speeds through the middle of my trip.

Start your engines

The first thing I wanted to test was how much fuel entered the oil simply from starting the engine. Many people believe that starting an engine is one of the most taxing and wear-producing events throughout the engine’s life. To make that process easier, engines tend to start slightly rich (more fuel, less air). So, I set out to find out exactly how much fuel my car dumps into the oil upon startup.

After letting the engine sit all night, I took a pre-experiment test sample (to ensure no fuel was present) then I started my engine one, two, and three times, sampling after each event. The results were surprising. So surprising, in fact, that I re-ran this test two more times to make sure my results were correct.

The pre-experiment test sample revealed a flashpoint of 360ºF (fuel at <0.5%). Okay, good. No measurable fuel was present, which is exactly what I was hoping for since I’d taken the highway route home the night prior.

After one engine start, the flashpoint read 385ºF. Wait a minute. That’s higher than the pre-sample, so there’s definitely still no measurable fuel present. Okay, maybe that was just an anomaly.

I started the engine again (for a total of two engine starts in a row). The flashpoint measured 380ºF. That meant the flashpoint was heading in the expected direction (lower flashpoint = more fuel), but still, the flashpoint wasn’t low enough to show any significant fuel.

After the third start in a row, the flashpoint read 375ºF, which was again lower (and heading in the expected direction), but not low enough to show any measurable fuel. So all four of my samples from that morning had the same fuel measurement: <0.5%.

I was stumped. I was so certain I’d have some fuel in my oil! So I ran the test again and the same thing happened: no measurable fuel present in any of the samples. I re-ran the same exact test once again, and once again got similar results.

I decided perhaps my Kia was just very good about keeping fuel out of the oil, so I took my husband’s car with a supercharged 2.0L Ecotec engine for a day and tried the same test. The results? Same thing: no fuel, with slight fluctuations in the flashpoint.

Then I had an “a-ha!” moment. Maybe the fuel just wasn’t getting a chance to seep down past the rings into the oil. I had been sampling immediately after starting, so maybe that’s why no fuel showed up. So I ran the test again, only this time I let my engine sit overnight after the three starts.

In the pre-experiment test, the flashpoint measured 370ºF, showing <0.5% fuel. I started my engine three times and immediately after the third start, the flashpoint measured 360ºF, which was lower but still not low enough to show any measurable fuel.

Then I let the engine sit all night and sampled before work in the morning. That test revealed a flashpoint of 365ºF; still no measurable fuel. By this point I wanted to find a brick wall to repeatedly press against my forehead in a semi-violent manner. I was frustrated, confused, and worried that I’d have nothing to write about.

I suppose if we wanted to get into semantics, we could talk about the slight differences in flashpoints as showing some fuel, though it takes a 20ºF drop in flashpoint (for gasoline engines) to show 1.0% fuel dilution. So that means the 5ºF drops in flashpoint I’d noticed likely show just 0.25% fuel.

Does starting cause fuel? Perhaps. I did find slight dips in the flashpoint, though as I’ve mentioned, 5ºF isn’t enough to show any serious contamination. Maybe four starts would have given me enough of a drop in flashpoint to get a decent amount of fuel in the oil, but really, who starts their engine four times in a row? Honestly, who starts their engine even three times in a row on a regular basis? I wanted these to be relatively real-world scenarios, so I couldn’t justify four starts in a row, and I figured three was pushing it.

Idling

I couldn’t get any serious fuel to appear in my oil from starting the engine, so I figured I’d try idling. For a week, I drove the same highway route home, let my engine sit all night, then in the morning I’d take a pre-experiment sample (to confirm no fuel dilution was present to begin with), and then I’d sample after a certain number of minutes of idling.

I tried a five-minute idle; no measurable fuel. The next morning, I idled for ten minutes and this time I had more success: 1.0% fuel had accumulated in the oil. You know, for someone trying to get fuel contamination in my oil, 1.0% isn’t an impressive amount, but it’s more than I’d gotten before. I figured I was on to something with the idling, so I tried 15 minutes the next morning, but much to my dismay only 0.5% fuel turned up. After 20 minutes of idling, still only 0.5% fuel.

Does idling cause fuel dilution? It would seem so, except that there’s a cut-off point in there somewhere. This is just hypothetical, but maybe after ten minutes the engine heats up enough that it either starts cooking off the excess fuel dilution or it just stops pumping in extra fuel. I’m not even sure one of those is the answer, but it’s the best guess I can come up with.

Shopping for science

With my newsletter article deadline quickly approaching, I had to come up with one last-ditch effort to get a bunch of fuel in my oil. Think of this as Custer’s Last Stand (except with less bloodshed).

For one afternoon, I vowed to do everything “wrong” in order to get as much fuel as possible in my oil. I was going to run a bunch of errands, idle my engine excessively, make frequent starts and short trips. The best way I could think to do this (without just circling around my block several times in one afternoon) was in one, massive shopping trip.

I did about 40 minutes of highway driving Saturday evening then let my Kia sit all night. Sunday after church (we took the other car to ensure the consistency of my results), I went on my scientific shopping trip.

Here’s the summary of my trip. I spent a total of about six hours shopping Sunday afternoon. In those five hours, I started my engine seven times, idled at the ATM for about 2 minutes and traveled a grand total of 6.4 miles. The longest drive was from my last stop to home, which was about 2.5 miles.

I spent a fair amount of time at each stop in hopes that my engine would stay relatively cool (so as to not burn off fuel). When all was said and done, I left my engine sit overnight and sampled in the morning before work. The flashpoint read 375 ºF: <0.5% fuel.

Usually, I’m fairly good at things when I put my mind to it, but when it comes to getting fuel dilution in my engine oil, I failed. Then again, if you’re going to fail at anything, this is a good thing to fail at.

What happened?

So why couldn’t I get any serious fuel dilution? I have a couple of ideas. First, I think my Kia is just too smart. It has an on-board computer that senses things like ambient temperature, engine temperature, and elemental composition of the exhaust gas, and it uses these things to calculate the exact amount of fuel it needs to operate most efficiently. So my engine never puts in more fuel than it needs, and therefore that fuel doesn’t end up in my oil.

Second, I think ambient temperature probably has a lot to do with it. I did most of my testing in May and June in temperatures were almost always above 70ºF. We tend to see more fuel in the winter months, and I suspect that if I’d done my testing in the winter, I might have had different results. I’ve heard that on a cold day, fuel from the air/fuel mixture will condense on the cylinder walls almost instantaneously. Those beads of fuel will sit on the cylinder walls for a brief moment until the piston rings scrape that fuel down into the oil. Maybe I’d get more fuel in my oil in winter, but I’m not sure I’m willing to do these experiments in the dead of winter in the name of science. If I do, you’ll hear from me again and I’ll let you know what I find out.

Does the fact that I couldn’t get any fuel in the oil mean that idling, city driving, and frequent starts do NOT cause fuel dilution? We don’t think so. In some cases these things can cause fuel contamination, especially in carbureted engines.

We saw it with our own eyes several years ago, when an intern did a similar experiment out in the parking lot. He took a sample from his 1978 Ford pickup truck when it was cold, and that oil had no fuel in it. Then he started the engine and took another sample right away, and presto! Fuel contamination at 1.3%. So start-up can indeed cause fuel to enter into the oil, but newer engines may be better at avoiding excessive contamination.

Since fuel often comes and goes, we still believe operational factors are likely sources for fuel dilution, though perhaps injector problems are responsible for more of the fuel we see in new engines than we originally thought.

Now here’s the big question: if fuel is present at 2.0% in your sample, does that mean you have a problem? Not necessarily. Just because my Kia didn’t produce fuel dilution doesn’t mean your Honda, Ford, GM, Volvo, or other engine won’t. Every engine operates a little differently and uses a different calculation to figure out how much fuel to spray into the cylinders. Some engines tend to run a little richer for some reason or another.

Of course, if your engine doesn’t have an on-board computer, you won’t have the opportunity to benefit from its fuel-reducing powers, so fuel may be more prevalent in your samples. It should be noted that I didn’t have the opportunity to test a carbureted engine or a diesel engine, which would almost certainly render different results. So I can’t say what’s normal for those types of systems.

So how do you know if fuel is a problem? There isn’t a one-size-fits-all answer. Whether or not fuel is a problem depends on your circumstances. Some engines will always see some fuel dilution because of the operation they see or the type of engine they are. Turbo and supercharged engines, for example, have higher compression, which means more blow-by, and we sometimes see that raw fuel blowing past the rings. In small amounts, that can be fine. In larger amounts, it’s probably not.

If you start to notice that fuel is increasing wear or diluting the additives in your oil, that can be a sign that fuel’s a problem. If you notice increased wear and lingering fuel dilution, it may be time to get the fuel issue taken care of. Finally, if you notice your engine is “making oil” (the oil level seems to be rising on the dipstick), you might have a fuel system problem. I can tell you this: if you have a Kia 2.4L 4-cylinder engine and you find fuel at more than 1.0%, you may have a problem. You might also have an e-mail in your inbox from me asking you for pointers.

By |2024-09-19T09:21:21-04:002023|Articles, Gas/Diesel Engine, Lab Tests|Comments Off on The Fuel Experiment

Viscosity: Going Down!

April of 2017 will mark my 20th year here at Blackstone and in that time a lot of changes have taken place. I’m a big fan of change myself and long ago got some advice from my Uncle Dan who said, “The only thing that’s constant in life is change.” I decided that his words were the truth, and it seems to me like change should be embraced because there is no stopping it, and also for the most part change is good. It might not seem good on the outset, but if you give it some time, things eventually work out. After a bit of reflection on the changes in the oil industry, I’ve decided that one of the best ones has been the trend to lower viscosity oils.

The thin oil trend

I started changing my own oil on a regular basis in the early ’90s, and at that time 10W/30 was the oil of choice in my 1981 Chevy Citation. I didn’t think that much about it. It said right on the oil cap use 10W/30, so I bought whatever was on sale and went along fat, dumb, and happy.

At that time 5W/30 oil was starting to be as common as 10W/30 on the shelves, but I never went with it because it wasn’t what GM said to use. However, my wife’s first car (1994 Buick Skylark) recommended 5W/30, so that was a sign that thinner oils were starting to come into favor. Again, I didn’t think much about it, and basically just stuck with what was recommended when I changed her oil.

Then, in the early 2000s I noticed that we were starting to see a lot of samples from Ford V-8 engines that were running 5W/20 oil. This was a bit of a surprise since that’s pretty thin oil, but it was hard to argue with the results. Those engines produced some of the best wear we would see on a regular basis, so it quickly because obvious to me that this was a change for the better. And if you think about it, it makes sense.

Wear at start-up

For years, it was taken as fact by a lot of people that most of the wear in an engine happens at start-up. Now I haven’t done any studies myself to see if that was true, but that statement didn’t seem out of line from what I know about engines.

So assuming it’s true, why would just starting an engine cause wear? Well, I believe the answer is the oil isn’t flowing over all of the parts like it does shortly after start-up. I do know that engines have virtually no metals parts touching one another without a thin film of oil providing a lubrication barrier, at least once oil pressure has been established. I also know that thin oil pumps easier than thick oil, so it’s seems obvious that the quicker you can get the oil to the parts, the less wear an engine will produce. From then on I was sold on thin oil.

So what’s the problem here? Well, when I first started at Blackstone, I was told that thick oil is good for the bearings, and I didn’t have cause to doubt that statement until I saw these Ford V-8s producing virtually no wear, and I knew some of them were work trucks that were hauling heavy loads. So could it be that the bearings didn’t need thin oil to survive? The answer is a resounding yes.

Even for diesels?

That trend toward thinner oil has proven true everywhere except for diesel engines. For years and years and even today, the oil of choice in a diesel was/is 15W/40. But, if a heavy-duty gas engine can run light oil, why can’t a diesel?

We would occasionally see diesel samples from Alaska that were running 5W/30 and they would look fine, so why not use it down here in the lower 48? In colder weather, it was acceptable for diesel to run thin oil, but that really only matters on start-up. But the oil doesn’t get thicker as it heats up¾it thins out.

So could it be that thin oil does fine even when it get gets up to operating temperature? The answer to me was another resounding yes, and I wondered when the day would come that 15W/40 would not longer be the manufacturer’s choice foe diesel engines. Well, that change has come!

Today we are starting to see more diesel fleets going to 10W/30, and I’m here to tell you that this change is good. Not only will the bearings do just fine, but the engines will start up better (especially in the cold). Now, there will always be some people who are resistant to change. In fact that are whole countries that are. The German vehicle manufacturers have yet to embrace thin oil, though I think that change will happen someday.

Yes, change is good and I have yet to see a change happen that leaves hundreds of thousands vehicles stuck along the side of the road. The sulfur has been virtually removed from diesel fuel and your old tractor still runs fine* (if this statement makes you mad, see my note below). Additive levels have been lowered in engine oil and the old flat-tappet engines still run great. And now thinner oils are here to stay. I’m excited to see what the changes the next 20 years might bring and I believe that I’ll embrace it, unless it involves getting rid of oil altogether!

*Note: Don’t get mad at me. I wasn’t in charge of that change and your injectors/fuel pump were probably on their way out anyway!

By |2024-09-19T09:35:43-04:002023|Articles, Gas/Diesel Engine, Lab Tests|Comments Off on Viscosity: Going Down!

All About Insolubles

Once upon a time I lived in primitive conditions as a soldier in a war zone. We had few amenities, eating our three daily meals from a can.

The morning coffee routine wasn’t very refined, either. The cooks worked in a tent. They heated water for coffee in large 15-gallon pans over a gasoline-fired stove. To make coffee they simply dumped tins of ground coffee beans into the boiling water, and after it steeped for a while, the water turned brown. When it appeared to be the right color, the heat was turned down and the churning grounds—at least most of them—settled to the bottom. If you were early when you passed through the chow line, you got a top-of-the-brew serving that wasn’t bad. If you were late and your cuppa joe came from somewhere near the bottom, you could chew it.

We enjoyed the coffee grounds in our coffee as much as your engine enjoys insoluble materials in its oil. These days, there’s usually only one reason I find grounds in my coffee: the coffee filter failed for one reason or another. Usually, one or more of the filter pleats has laid down, letting grounds overflow the rim. But the insolubles in your engine’s oil are not quite as simple as the grounds in my Mr. Coffee machine. There are many reasons that insolubles form in a gas or diesel engine oil sample.

Insolubles are solids

Insolubles are the total solids we find in an oil sample. Insolubles are often caused by oxidation, which is a natural process that occurs when oil is exposed to heat or oxygen (in the air).

Oxidation leaves free carbon in the oil when the oxygen molecules combine with hydrogen. Virgin oil usually doesn’t have any insoluble materials in it. When it occasionally does, the most we normally find is a trace level. The insolubles in virgin oil are from the normal oxidation process of the oil. At least some of the insolubles in the oil samples we analyze are free carbon particles, which are hard particles that can damage sensitive, close tolerance parts like friction bearings.

Keeping insolubles within the normal range is important for anyone wanting to run extended oil change intervals, but it’s also important to anyone wanting to get the longest life possible from their engines.

Measuring Insolubles

There are various methods of measuring insolubles in oils. One way is to draw the oil through a very fine filter (½ micron) and then weigh the filter. The filter’s weight gain is reported as a percentage of insoluble materials by weight, compared to the weight of the sample that was drawn through the filter. Another measuring method rates the darkness of the filter patch compared to a standard.

The insolubles test we use at Blackstone is a centrifuge method. A measured volume of oil is mixed with a heated solvent, agitated, and spun at high speed. Insoluble materials collect at the bottom of a tapered glass tube and can then be measured as a percentage of the sample by volume.

The insolubles test is a good measure of how fast the oil is oxidizing and receiving contaminants from blow-by or other engine systems, and how effectively the system’s oil filtration is functioning.

Any contaminant in the oil will accelerate its tendency to oxidize, so the insolubles test is a good crosscheck when we suspect a contaminant like gas, moisture, or coolant. Excessive metals in an oil sample will also increase the oxidation tendency. So will frequent and/or extreme heat cycles. Stop-and go-driving is harder on engine oils (and creates more insolubles) than highway driving, because the engine experiences more heat cycles.

What Causes Higher Insolubles?

We like to see insolubles for gas engines at or below about 0.5% or 0.6%, depending on the type of engine. Some diesel engines are cleaner than others so the normal range may run from 0.5% to 0.8%.

As engines age insolubles in the oil tend to increase. You may think, judging from the appearance of a used diesel engine oil, the insolubles would be unbearably high. Actually, the blackness of these samples is from fuel soot, which is clearly distinguishable from, but also contributes to, insolubles. Fuel system and combustion problems will cause excessive soot. If we detect excessive soot in your (diesel) oil sample, we will mention it in the comment section.

If we found no contamination (soot, coolant, etc.) in your oil and your oil change intervals are normal, we often mention a problem at oil filtration as a possible cause of high insolubles. The oil filter could be inferior. Or, it’s possible the oil filter bypass valve relived if the filter was becoming restricted. The filter system bypass may also open upon cold starts when the oil is too thick to pass through the filter media, which may be partially restricted. Once the bypass relieves, the filter is effectively out of the system. Insolubles may also be forming because your oil use interval is too long for the operating environment of the engine, and your oil filtration system can’t keep up.

Insolubles are just one of the tests we provide to determine the condition of your diesel and gas engines and used oils. It’s an important test that helps us gauge the condition of your oil and engine, and helps keep you driving happily for many miles to come!

By |2024-09-19T10:37:16-04:002023|Articles, Lab Tests|Comments Off on All About Insolubles

Oil Filter Inspection

Routine oil filter inspections are a useful tool in the aircraft owner’s diagnostic toolbox. We use spectrometers to test for metals on a microscopic level, smaller than you can see and smaller than an engine’s oil filter will remove from the oil. Larger pieces of metal that might not show up in spectral testing will be trapped in the oil filter. By checking the filter at each oil change, you’ll get a good idea of what normal is for your engine and be able to quickly identify any changes that might be the early signs of a problem.

Cutting the housing

In order to inspect the filter pleats, they must first be removed from the housing. While a hacksaw or angle grinder might get you there, we strongly recommend using a filter cutter to remove the lid of the filter housing. A filter cutter cleanly cuts the robust steel housing without producing metal shavings that might find their way onto the filter pleats you are about to examine. Plus, who doesn’t like a good specialty tool?

The AFC-470 from Airwolf Filter Corp is our go-to cutter here at the lab: http://www.airwolf.com/aw/products/oil-filter-cutter. This tool fits the filter from any Lycoming or Continental engine we’ve come across. Airwolf also offers a smaller cutter for Rotax engine filters. For those who might also want to examine filters from other engines, like their car or truck, filter cutters that cover a wider range of filter sizes are available from speed shops such as Summit Racing. (https://www.summitracing.com/parts/sum-900511)

  1. Secure the filter lug in a bench vice. If the filter doesn’t have a lug, you can secure the lower section of the filter housing in the vice – just be careful to not crush the housing or it may trap the internal cartridge with the filter pleats. Poking a hole in the housing to allow oil to drain can also trap the internal cartridge, so we recommend avoiding that as well.
  2. Place the filter cutter on the filter and gently tighten the cutting wheel. We like to take a conservative approach in cutting the housing, progressively tightening the cutting wheel over a few rotations, rather than trying to cut through in one pass.
  3. Once the lid has been cut, the cartridge with pleats can be removed from the housing. It is also good to inspect the inside of the filter housing for metallic particles and other debris that may not be trapped in the filter pleats.

Removing pleats from the cartridge

You have two options at this point. You can use a solvent such as mineral spirits to wash debris from the pleats, leaving the cartridge assembly intact. The resulting solvent/debris slurry is then filtered for examination. In our experience, this flushing method may not always remove all of the debris from the filter pleats. We prefer to cut the filter pleats from the cartridge for examination by the following method.

Disclaimer: There is the potential to guillotine a finger or two during this process. Proper technique greatly reduces the chances of extensive cursing and an unplanned trip to the local emergency room.

  1. Place the filter cartridge horizontally on the bench and hold with your non-dominant hand. Locate the filter pleat seam that adjoins the two ends, usually with a metal band or glue.
  2. Hold the knife with your knuckles against the bench for stability. Starting at the seam and using only downward force, cut along the edge of the pleats opposite the side you are holding. We prefer to rotate the pleats into the knife blade, firmly holding the knife in a fixed position. This method, when done properly, protects your off-hand’s fingers from the knife blade, where the knife moves downward into the bench if it were to slip.
  3. Flip the cartridge around and repeat steps 1-3 on the other side. You may have to make a few passes on each side to fully cut the pleats. Using a new razor blade helps.
  4. Again locate the seam where the two ends of the filter pleats are joined together. Cut across the pleats on either side of the seam.
  5. The pleats can now be removed for examination. If properly cut, the pleats will come out in one long piece with a clean edge on both sides.
  6. The pleats will still contain a fair amount of oil at this point, making it difficult to see metallic debris. If time allows, you can place the pleats on paper towels to drain overnight. You can also squeeze the pleats like an accordion and mop up the oil that squeezes out with paper towels.

Inspecting the pleats and basic identification of common particles

Stretch the pleats out under a bright light or outside on a sunny day. Larger metal slivers will be obvious, but you may have to look quite closely to identify smaller particles. Here at the lab, we have a dedicated space with clamps that stretch the filter pleats out in one long section. You can improvise in the shop by placing something heavy on both ends of the pleats.

  • A strong magnet (covered with a plastic baggie or cling wrap) will remove ferrous particles from the pleats. We also suggest checking the pleats themselves with a magnet. Severe steel wear may generate enough small ferrous particles to make the pleats react to magnet.
  • Aluminum has a bright, silver appearance and will not react to a magnet.
  • Copper-containing alloys, such as brass or bronze, vary from a light straw to copper color and will not react to a magnet.
  • It is also common to find carbon, especially in the filters from turbocharged engines. Carbon is black, hard particles that can be broken apart between your fingers. A large amount of carbon might indicate excess blow-by, but what counts as excessive is unique to each engine. Regularly checking the oil filter will give you a good idea of how much carbon is normal for your engine. You might also find carbon with steel embedded in it, so it is good to check carbon particles with a magnet.
  • Small bits of sealer material may also be found, especially after repairs. We generally don’t worry about this sort of non-metallic debris.
  • You might also find lead deposits from fuel blow-by. These particles have a bright, foil-like appearance that can look very much like a metallic wear particle. These deposits can be distinguished from metallic wear by their soft and “smudgy” texture. It is worth mentioning that these deposits are not lead from the wearing surface of a crank or camshaft bearing.

Steel sliver

Aluminum flakes under magnification

Brass/bronze under magnification

Carbon deposit

Sealer material

Lead deposit

Evaluating Filter Debris/Conclusion

In some cases, a filter will contain so much metal that a looming problem is almost certain. But it is more often the case for the findings to land in an ambiguous gray area, where the severity of the metal is situationally dependent. You can expect to find some metal and other debris in the filter from a fresh overhaul, for example, where the same findings would be unusual in a routine filter inspection for that same engine at 500 hours since major.

Lycoming offers good guidance on the identification and evaluation of filter debris in Service Bulletin 480F. In our opinion, a lot of the information in that bulletin can also be applied to Continental engines. Blackstone also offers a filter and filter screen examination service as a compliment to oil analysis – but we recommend doing routine filter screenings yourself to get familiar with what’s normal for your particular engine. Save your money for flying — check your filter yourself!

Further Reading

https://www.lycoming.com/content/suggestions-if-metal-found-screens-or-filter

By |2024-09-18T14:16:01-04:002023|Aircraft, Articles, Gas/Diesel Engine, Lab Tests|Comments Off on Oil Filter Inspection

Tales From the Oily Side

My business card says “Founder.” It’s not a title, but more of a boast, an inside joke. I’ve had all the titles a man could want and as I settle into the long, hopefully comfortable ride toward the end of this long, challenging and exciting life, the word Founder on my business card describes the business activity I am most proud of.

Is this a great country or what? Where else can a guy start with nothing and create something? There isn’t any paved, well-lighted path to business creation, but there are no barriers to prevent anyone from doing it either. This is a story about creating a business. It would have been helpful to be a genius, or rich, or to have powerful backing. I didn’t have any of those things but I still managed to get the job done. I can attest to surviving many great risks and difficulties in the past two decades, and we’re still standing, hale and hardy. Part of the reason we survived was just luck. Part of it was having a good idea. Part of it was refusing to quit when any reasonable man would have. All of it was a hoot! I’m the Founder. I started it. I believe in it.

The beginning of Blackstone

In the beginning I was sitting in a lawyer’s office in August 1985, incorporating Blackstone Laboratories. My wife was a full-time student at a private college and worked part time. We had some residual savings and stocks from past jobs, but after a month and a half of no employment, I was essentially broke. I was starting a laboratory business that I knew would be capital-intensive, with no capital. I had no clientele, no reputation as a businessman, and no place to open the doors. I was as alone as a guy could be and needed a lot of luck.

A lot of luck was awaiting me. Without it I would just have been another hapless hopeful with his shirttail hanging out, having lost his house, and returning to the dismal task of finding a real job in the world of work.

Incorporating Blackstone Laboratories was probably the most outrageous thing I have intentionally done. It made perfectly good sense to me and no sense to anyone else. My idea was to take oil analysis out of the full-service petroleum laboratory business and, concentrating solely on that one function, do it better, faster, and cheaper than anyone else. Ray Krok did it with the hamburger when he created McDonald’s. I wanted to do the same with oil analysis.

There are (I now realize) some obvious differences between Ray Krok’s idea and mine. When he started McDonald’s, Krok was already a successful businessman and had money and influential friends. His market was everyone who liked hamburgers, which includes nearly everyone on the planet. Even with all of this going for him, his journey into new business creation was not an easy one. Bankers, for instance, were reluctant to loan him money. At that time, there was no business category for “fast food.” To them, Krok was a restaurateur, but didn’t fit the mold for that type of business. They say there was a time that you could have bought half interest in McDonald’s for $50,000.

Good fortune

I could not have survived my early beginnings with Blackstone Laboratories without good fortune smiling on me. Early on, I was sitting in my back yard working on my business plan when who should mosey down my driveway, but my long-lost brother from Wyoming. “Hey, what’s up?” he asked. Bob was a graduate engineer beating the bushes for a new job, having recently been separated from a nice income by a West Coast power company. He pulled up a lawn chair. Sitting there beneath a maple tree on a fine, late summer afternoon, I outlined my plan for conquering the world with a better, faster, cheaper oil analysis program. He was off to Louisiana for a job interview and was thinking about visiting Alaska after that for the same reason. His parting words, as he made the trip back up the driveway was, “If you get the money, let me know. I might want to throw in with you.”

If Ray Krok had trouble with bankers, you can imagine the uphill battle I was facing. Bankers at least knew what hamburgers were. “Oil analy…what?”

The morning of the appointment to sign for the loans, I was sitting at the foot of my bed on a hope chest. As I was pulling on my socks, I realized my feet were ice cold. I was 42 years old and I thought surely, by now, I was past the point that I could come up “chicken” about any experience. Sure enough, I was literally experiencing cold feet. Once I signed those notes — along with my wife of the time, who took the plunge right along with me — I was embarking on this journey for real. The only possible outcomes were abject failure and bankruptcy, success, or death.

I got the initial loans approved for Blackstone not because of my brilliant business plan, my dazzling footwork, or my good looks. I got the money — far short of what I needed, I might add — because one of my neighbors was a commercial loan officer for a local bank. Why he was willing to go out on a limb for me I can’t tell you. Normally, bankers are not that adventurous.

Starting sales

Nothing happens in a new business until someone sells something. Just short of three months from the first day I began working on Blackstone Laboratories, we opened the doors in 600 square feet of rental space. About 80% of the loan money had been spent on new equipment and building renovation. Bob had come in with me, and with the help of many volunteers we fashioned a functioning laboratory and hung out our shingle. But wait! We didn’t have any oil samples to run. Money was flowing out fast enough, but nothing was coming back in.

Along with all the other activities of the past three months, I had been putting together a potential client list. At that time there were only a few places in our local business area that used oil analysis. Users typically had large diesel engines, critical factory machinery, or airplanes. Today, with everyone beginning to realize the importance of oil analysis, the market is vast. When we started you could list all the client possibilities within fifty miles of driving distance on one pack of index cards.

I called most of the “possibles” and made an appointment with anyone who would talk with me. The market greeted the coming of a new oil analysis company in town with little enthusiasm. During that first three months I didn’t actually have anything to sell. I built the potential client list by asking the question, “If I get my oil analysis business opened by November 1 and I can offer you the best oil analysis program on the planet at no more cost than you are paying now, will you consider using it?” That was a fair question that was hard to say no to. When they said yes, as most of them did, it gave me the perfect opportunity to set up the second appointment. But it didn’t get me any sure clients.

Money flows out of a business as steady as a beating drum. In order to survive you have to somehow match that outflow with income. While that may be intuitively obvious, it is a rude awakening when, after opening the doors of a new business you suddenly become aware that with each passing moment you are bleeding away your liquidity and have nothing coming in to replace it.

Just in case someone should actually call us or drop in, Bob stayed at the office. I went out to sell.

There was a semi-trailer manufacturer in town that had a garage to service their semis. The facility was Quonset huts of varying sizes attached together. I had visited several times and was certain they were going to buy our service. An unusual aspect of the place was this: to get from the smaller office Quonset hut to the larger one in which their maintenance work was done, you had to pass through the men’s rest room.

On the day I was to close the sale, Bob was along so I could show him the ropes. We met with the maintenance manager in the office. After a brief discussion the manager got up saying, “Well, if you want to work with us, come on” and headed into the men’s rest room. I started to follow when Bob grabbed my arm. “Wait a minute,” he said, “we don’t need business that bad!”

Working without pay

In the beginning, all the shoe leather I could spend didn’t produce thirty new clients in two months of dedicated work. Because we didn’t take credit cards, all the work we did manage to procure was with businesses that had to be billed. The invoice terms were net-30 but payments tended to arrive 45 to 60 days from the invoice date. I could only get invoices typed once a month. After our grand opening at the start of November, we didn’t achieve any cash flow income until after Christmas that first year. By Christmas I was flat broke. I had to go over to Bob’s house one evening and confess. The bank account was tapped out. There would be no more paychecks until we got business rolling. “Think it over. Are you willing to come back to work January 2 with no income? In or out…let me know.”

Bob stayed. For the next year payday became a function of finding ways to pay bills with little to no income. I personally borrowed from every source possible until eventually no one would lend me any more. It took a year of hard selling to get enough income to pay bills even without payroll. Sometime during the second year of operations we managed to eke out enough to pay Bob and myself $100 a month.

Entering the computer age

As sales increased, so did the physical requirements of typing reports and invoices. Bob ran the samples. I took care of nearly everything else. We reached the point of sixteen oil samples a day sometime in the second year. We had no computers and no money to buy any. If I started typing reports at 1:00, I could produce the sixteen (perfect) reports by 10:00 that night. The reports were three -part NCR paper, so any typos meant I had to start over typing a new report. My typing skills left a lot to be desired.

Late in the second year a mildly rotund gentleman with a round beaming face strolled in our front door. He was starting a new computer hardware/software company and needed business. I needed a computer and a program to run it. We made a deal. With his help, we managed to build a functioning computer system that could produce a perfect Blackstone oil report. It multiplied my report capabilities several times over. When we added the invoice function the following year, we had a system that could comfortably produce fifty reports a day.

The poor years

I come from a family of seven children. We grew up without having much other than the community of family closeness. In his autobiography, Ray Charles speaks of poverty: “Poverty knits people together. Affluence has the opposite effect.” Being desperately broke in the early years of the company’s development and working closely with Bob had a familiar ring to it. We were certainly a nonprofit business without having the tax benefit of being such. Business grew slowly, though we were never without things to do. One of the problems was neither of us could get any time away from the business. He didn’t have many oil samples to run, but they needed to be run every day. I had to be on the property every day to report the data and take care of the other aspects of running a business. Typing reports usually happened late in the day, after being on the road selling all morning and afternoon. Bob decided we needed another person so we could get the occasional day off.

Sometime in the second year, my brother John started hanging around the lab. Bob, who couldn’t stand to see idle hands, put John to work. John had sick leave income so was doing better financially than the two of us. He learned one lab job, and then another. He eventually was running the lab, freeing Bob up to do other things, including getting the new computer system up and functioning. For a while, John’s appearance was spotty, sometimes working at a factory, sometimes at Blackstone.

Then one fine fall morning, John showed up at Blackstone to work full time. While we needed the help, there was no money to pay him. We were not in any position to put anyone on the payroll since we really had no payroll. But John was family and was showing faith in what we were trying do to, so I welcomed him to the operation and tried to figure out how we were going to support him.

During the first year of operations I had invested several thousand dollars in Blackstone. Most of it was borrowed. Our revenue had grown to the point that I drawing some of that money back from the company and was getting some of the loans off my back. In order to support John I simply diverted the loan payment money to him for income.

Driving beaters

John had always driven “beaters” for transportation. When something, anything, went wrong with one of them, he would simply abandon it and buy another. Anything that was transportation was okay with him . When he started at Blackstone he was driving a rusted out AMC Hornet. The company bought me a Jeep pickup truck since I had to be on the road selling and my problem-ridden Jaguar had died. John’s Hornet died so I gave him the company pickup to drive and bought another Jeep, an aging Wagoneer from a car lot.

The only reliable set of wheels between the three of us was the Jeep pickup. When either Bob or I broke down, John would get the call to tow us in. Having had the experience of being on the strap behind John once in my life, I had no desire to do it a second time. Towing is a two-person function if it is to be done safely and successfully. With John up front you were sort of on your own. It wasn’t that he forgot you were back there. He would simply set off and navigate traffic as if he didn’t have a care in the world.

Returning from a late fall, family campout in southern Indiana, Bob suffered an electrical failure in his wife’s aging Toyota fifty miles short of home. John got the call. He found Bob along the berm of the northbound interstate lanes. John hooked Bob up to the strap and lit out in a cloud of dust. Everything went well until John swung out to pass a semi tractor-trailer rig at highway speeds. When Bob steered left to follow, the steering locked since he had forgotten to turn on the ignition. There followed the wildest ride of his life. The Toyota swung left as far as it could go, then swung back to the right, threatening to tunnel itself under the semi. It stopped short and swung left again. Bob was sliding back and forth in ever increasing arcs and there was nothing he could do about it. John continued the pass and a final hard swing took both of them to the ditch, fortunately upright. Bob was speechless. It took awhile before he could pry his white fingers off the steering wheel.

Price matters

We continued to build Blackstone by saving engines in cars, trucks, airplanes, and factory machines. Our clients stuck with us because our program really worked. We saved them money, it was as simple as that.

Selling it was another matter. You can be the best and know you are the best but still have trouble convincing new client prospects. Our defensive position was to maintain our current client list by saving them money. Our offensive position was pounding the bricks with all the energy I could muster up and still get into work that afternoon to get the reports out in a timely manner. There was intense competition out there for the limited numbers of businesses that used oil analysis. We were the best but not the cheapest, and cheap seemed, at least at the time, to turn more heads than did quality. The benefits of using our quality program were so great that I thought the cost of the oil samples was incidental. The problem was convincing new clients of that.

At first I tried selling oil analysis at the same price as my competitors. Most of them had subsidized programs, meaning they had another source of income, like oil or equipment sales, and could provide oil analysis at an unrealistically low price, often half of the cost of actually processing the oil sample. As an independent laboratory we had no such advantage. Competing price-wise was the shortest possible path to bankruptcy. I had to raise prices or cease to exist. We did that in short steps until we finally got to the point that the volumes we were running could support the company and the three of us, if we didn’t expect much income.

Enter Craig

Sales grew quickly in the first three years, but fortune really smiled on us when Craig joined us as a commission-only salesman. Craig was between jobs and marriages and was an acquaintance of John’s. Always open to a new product or idea, Craig stopped by one day to see what we were up to. It was our third year of operation. He found our approach to oil analysis exciting and decided he could bury us in oil samples in a short period of time. I’d heard it all before, but having been out there pounding the bricks myself, I was willing to try anything. Craig was different in a charming way. A moderately tall, bright-eyed, lanky young man with prematurely graying hair, he was a guy women wanted to hug. There were times I wanted to hug him myself.

If the Greek derivation of the word enthusiasm is “god within,” Craig was blessed with an entire committee of gods. He liked to laugh and it was fun laughing with him. We talked about where we might find new business and he decided it was factories, which were the biggest users of oil of all the companies that used oil analysis. I’d had good luck with factories and had several as clients.

We had a Ford factory in the Toledo area that sampled stamping machines regularly. We found a mechanical problem on one of their presses right before the 4th of July holiday. When they checked the oil reservoir they found parts of a gear. They managed to fix the machine over the holiday and lost no production. Had the machine failed during a production run, they estimated their losses would have been about $5 million. They paid us $15.00 for the analysis report. That’s a nice payback, no matter how you look at it.

Craig looked around and decided to target the automakers’ factories and those of their suppliers. The Motor City was within driving distance. After working the phones for a few days, something Craig had a wonderful knack for, he set out at his own expense to sell them.

Oil analysis was not widely used in factories at the time so he didn’t run into the competition that I had been butting heads with in other market areas. While I placed articles in trade journals, Craig knocked on doors, piquing interest in how much money the industrial guys could save with oil analysis

We had three months with Craig working full time, and during that time he brought remarkable progress to our program. His income on the commission-only basis was not growing fast enough to support both him and his ex-wife, so he eventually went to work selling roofs for a company that could pay him more. He stayed on with us, however, part time. He and I did a lot of traveling together in the next couple of years, doing presentations along with direct sales. Craig was, and still is, a remarkable individual. He will never be accused of being a small thinker. At one time he tried to sell the U.S. Air Force. I know. I was with him. They actually talked with us. We didn’t get the sale. (Just for the record, the U.S. Military does its own analysis. As we understand it, every military aircraft has an oil sample done before each flight.)

If Craig was the maestro, I was at least the saloon piano player. I saw firsthand what a professional sales person could do for a fledging company. We grew like wildfire until the recession of 1989. Those were heady years. We established decent incomes, upgraded the facility and eventually bought the building we were in. All three of us were driving company cars, though none of them were new or particularly reliable. From 1985 until 1989, I felt like we were achieving success.

The tide goes out

As surely as the tide rushes in, it reverses and ebbs back out again. Auto sales plunged in 1989, and the automakers and their suppliers contracted to bleak austerity. They work in a cyclical business, and roughly every three years (at least back then) they worked a boom and bust market. It was like a well-choreographed dance. When hard times came to call, they would cut all non-essential spending, including oil analysis. In the short span of three months, we lost nearly 50% of our business.

Craig drifted away and eventually moved to Colorado and remarried. I thought we would recoup the factory business when the recession ended, but it wasn’t to be. The oil companies, which provided cheap (read: subsidized) oil analysis programs, moved into the gardens we had cultivated. The automakers and their larger suppliers instituted new purchasing schemes that precluded working with a company as small as Blackstone.

Once the dust settled and I could clearly see where we were, we began trying to rebuild the dream. We had successes and failures, like any business. Competition had intensified during the long drought of ’89–’92. Many of the traditional markets we had been working in were occupied with new squatters. I found new ways to sell, but there were long periods of time where I couldn’t make much progress. For the ensuing half-decade we always had a main customer or two that sustained us, but it became increasingly difficult to maintain payroll and keep our aging equipment running. For the longest time, the magic was gone. We existed but we couldn’t seem to grow. Sales peaked in ’91, then flattened out and didn’t make any real progress until ’97.

Personally, things got equally as tough. Both my kids were headed off to college, my daughter to Indiana University, my son, two years later, to Purdue. If you haven’t had the experience of getting bursar bills unexpectedly, along with other miscellaneous charges from the university, you haven’t seen hard times. We had no plans or savings to cover the expenses, so we just muddled along, paying costs out of cash flow, which, while adequate for the four of us living together minimally, was hardly adequate under the new circumstances. We got by but I don’t know how. Much of it was my kids’ willingness to work and do whatever was possible with limited funds.

My wife and I eventually divorced. Then my brothers and I had a falling out. We had worked together a decade and though we had a lot of good times together, and we could not have gotten that far without all three of us, it became clear that unless something changed, we would eventually fail. Bob left first and eventually bought a small town newspaper, which he has turned into a successful operation. John retired to his workshop.

Turning point

In August 1996 I was just getting started rebuilding a two-acre farm property that my fiancé Sue and I had pooled our money to buy. Two weeks after moving in, Sue and I were married in the front yard. That was one of the few bright spots in an otherwise dismal stretch of time that had begun in 1991. I didn’t know it at the time but it was also a pivotal point in my life and the life of Blackstone Laboratories.

My daughter Kristin had graduated from Indiana University with an English degree and moved to Colorado. She had found happiness and success in magazine editing. My son Ryan had graduated with a mechanical engineering degree from Purdue University. He had interviewed for engineering work but hadn’t decided on anything definite.

While Blackstone hadn’t fallen into complete disarray, we had, for a very long period of time, established a pattern of no progress. We would win some and lose some, but there was no significant growth for six years. The dream wasn’t dead but it was seriously tarnished for most everyone with whom I was associated, business or personal. Except for one person.

Unbeknownst to me, Ryan, who had been on the outskirts of the business since the company started when he was 12, knew as much about Blackstone as anyone alive. I thought he would probably take an engineering job, maybe far away from home, and pursue his own life. He could have done that with my blessing.

One evening in August 1996, Ryan and his fiancée, Sheri, were over for a cookout. After dinner we were relaxing in my back yard when I asked Ryan what his plans were for the future. He said, “Well Dad, I thought maybe I’d join you to help build Blackstone.”

I was stunned. Here was a bright young man with great earning potential, saying he was willing to come work with me knowing I could hardly pay him a livable wage. I told him I would see what I could do. It took awhile, but on April 15, 1997, he went on the payroll at about a third of what he could have made elsewhere.

John was still running the lab at the time, and I’d brought Sue in to run the front office and accounting. With Ryan on the property there were four of us. We didn’t have much to show for twelve years of operations. Our equipment was aging and there was little money with which to replace it.

We had only one computer to write reports on, and it was tied to an old printer that we couldn’t get parts for. The original programmer was still around to help when an emergency came up, but he was never more than a moonlighter and had less and less interest in helping out.

From the moment Ryan first set foot on the property, the old start-up magic began creeping back into the company. His approach can be summed up with a statement he often made at the time, “Whatever it takes, Dad, whatever it takes.” I had company in my desperate situation and Ryan didn’t see it nearly as desperate as I. We had a business. We had cash flow. Working with him was refreshing. I had an inkling that we just might get the company back on track.

The old magic returns

I found a spectrometer in Detroit and the financing to buy it. That solved the problem of aging equipment. Ryan drove up to New Hampshire to spend a week at spectrometry school. He camped out in a tent in late October to save us hotel expense. When he got back he put the new machine in gear and, for the first time in history, Blackstone had an expert in spectrometry on the payroll.

It was wonderful to have a bright-eyed, enthusiastic young man to work with. He was interested in all phases of the business and took many chores of the operation into his office. We started making progress. Ryan set up new processes and systems that improved our efficiency. He solved many of the problems that had made us fragile. I had less to worry about and work became fun again. The mood of the company improved. There seemed to be nothing Ryan wasn’t interested in and nothing he couldn’t do. He was the first person I was ever able to teach the report-writing process to.

We had been on the Internet for some time. Selling oil analysis via the Internet was John’s idea. He’d heard about a guy who sold buckets using this new medium. There was nothing special about his buckets and they weren’t even cheap. But he became a huge bucket salesman with his Internet sales.

I agreed we should give the Internet a try. With the help of a computer-savvy nephew, Bob and John had started and administered a website. It wasn’t very good but it did generate interest, some of it international. Though it wasn’t expensive as a sales tool, it didn’t make us any money in those first few years either. Being in the throes of a perpetual cash shortage, I thought many times about discontinuing the website. When I mentioned this to Ryan, he thought otherwise.

By making it more informative and user-friendly Ryan thought we could make the website productive. We reorganized and rewrote it and had a professional reestablish our presence on the web. The result was amazing. The growth of the Internet during that period was incredible. More people had home computers, and our presence on the Internet meant oil analysis was available to the general public for the first time. More people became aware of what oil analysis could do for their personal cars and trucks. To use an analogy, for the first twelve years of our existence, we were trying to throw a basketball into the hoop from the far end of the floor. Using the Internet, we began throwing basketballs into a canyon standing on the rim. We can’t throw them in fast enough, nor is there any chance, in my lifetime, that we will fill the canyon up.

Upgrades & hiring

The software that originally got me past hand-typing reports and invoices was still in use when Ryan started. During his four years at Purdue’s engineering school he had become familiar with computers and networking. I don’t think it would be an exaggeration to suggest he was appalled by the antiquated system I had been limping along with.

Sales were improving, so he hired an outside contractor to build the foundation of a new database system. After a few months that company became too aggressive with their billing practices so we had to undertake the project in-house. Ryan tackled this project too, taking some courses to learn how to program and hiring a full-time programmer to help complete the project.

Early in 2002, sales were booming. I had my back against the wall — even with Ryan’s help I was writing so many reports every day that it was physically getting me down. If you’ve used our oil analysis program, you know we write individual comments for every report. If I had to keep typing reports at the rate I was, I was going to be worn out completely. We needed another analyst who could pick up report writing and some of the other aspects of the business.

“What about Kristin?” I asked, one rainy night as Ryan and I were making our way our to our cars after another long, hard day. It stopped Ryan in his wet tracks. “I’ll think about that,” he replied. By the next morning we were working on the idea of possibly bringing Kristin into the business.

Kristin and her husband were living in Michigan. She was managing editor of yet another magazine. They had recently relocated from Colorado and were settling into a new life and home. At first I didn’t think there was much of a chance of getting Kristin into the company. But after some discussions, she joined us in April 2002. As it turned out, Kristin not only proved to be an expert report writer, but she picked up many of the other business functions that were overloading the rest of us. Today, Kristin is a vital part of the business. She is not only the report writing champ, but manages virtually all of the non-direct operating functions of the company including the website and newsletter.

Saving engines

We have always had the technical ability to save engines and other mechanical systems from failure. As sales grew we saved more engines. As our saves increased, so did our reputation. When we save an aircraft engine it is often a life-and-death matter. When the save is an industrial machine, it can save millions of dollars in downtime. When it is a car or truck engine, it adds many years of useful life to the vehicle and is equivalent to putting thousands of dollars in a client’s pocket. When you compare the cost of an oil analysis to the potential savings, the payback is tremendous.

Looking back on two decades I can see turning points that brought us through perilous junctions in a long journey. Some of it was planned but much of it was sheer luck (or fate, if you will). There are nearly 300 million people in the U.S. alone, who own twice that many cars, trucks, boats, and airplanes. To keep those transportation systems alive and well, they need oil analysis as much as people need doctors. It is our job at Blackstone to make our technology as commonly known and accepted as X -rays and MRIs. We are doing that and the result is a phenomenal, modern-day success story. Is this a great country or what?

Pardon me for the long story. My business card says “Founder.” I’m proud of my kids and all they’ve done to make Blackstone the great and growing company it is. I’m proud of our technology and that we can make it easily understood. We don’t have a doctor to interpret laboratory results. We are the doctors.

Looking ahead

Jim is no longer with us; he passed away peacefully at his home in November 20, 2015.

But his dream lives on.

Blackstone has customers from all 50 states and over 75 different countries on six different continents, and we’re still growing. It’s been a great ride so far, and it ain’t over yet.

By |2024-09-18T14:23:22-04:002023|Aircraft, Articles, Gas/Diesel Engine, Industrial, Lab Tests, Marine|Comments Off on Tales From the Oily Side

Oil Viscosity

Most of us have only a vague understanding of viscosity. We tend to choose an oil with a viscosity that we believe is correct for our particular engine, but would another viscosity improve or reduce the life of the engine? Can we pick and choose a viscosity outside the manufacturer’s recommendations?

Technically, viscosity is defined as resistance to flow. Commonly, though, we think of it as an oil’s thickness. To be more specific, it is the thickness of oil at a given temperature. The plot thickens (ha!).

The viscosity of an oil could be reported at any temperature, but to standardize things, most laboratories report either a low temp (100F or 40C) or a high temp viscosity (212F or 100C) and stick with either Fahrenheit or Celsius. At Blackstone we report the high-temp viscosity, which is generally the temperature the engine is at while it’s running and the temperature at which the oil spends most of its time. We can do the low-temp viscosity too, if you’re interested, but the engine spends so little time running at the low-temp viscosity that it’s not a useful test for most people.

An apple is an apple, no matter what language you use to describe it. In the same respect, there are many ways to describe viscosity: engines use the SAE engine chart, industrial equipment mostly uses the ISO chart, gear oils use the SAE gear chart, etc. (Download your own viscosity chart here.) No matter what you call it, the number given defines the thickness of the oil at the standard high temperature.

Multi-grades explained

Engine oil can be either straight weight or a multi-grade viscosity. A major difference between the two is simply the addition of a VI additive, which allows the oil to maintain more or less the same flow rate regardless of its operating environment. Think of the difference between honey and water. Cold honey flows very slowly, but if you put it in the microwave and heat it up, it will flow much more easily. Water, on the other hand, flows at pretty much the same rate whether it’s hot or cold. That’s because water has a very narrow viscosity range, whereas honey’s is much wider. When it comes to engine oil, it naturally has a wide viscosity range, like honey, flowing slowly when it’s cold and faster when it’s hot. But we want it to act like it has a narrow viscosity range, like water, maintaining a fairly consistent flow rate regardless of whether the oil is cold or warm. That’s where viscosity improvers enter the picture. The VI additives in multi-grade oil help it move more easily through a cold engine upon start-up, but still provide cushion and lubrication when it’s hot.

Which viscosity to use?

People often ask us if it’s okay to use a different viscosity oil than what the manufacturer recommends. And typically, the answer is yes. Engine manufacturers dyno-test their engines using a specific viscosity oil, so when you use the viscosity they recommend, you are working with a known result. Going to another viscosity is an experiment, but it’s usually a harmless one. For the sake of efficiency, you want to run the lightest grade oil in your engine possible, within limits. If you’re racing, for example, that may require a thicker oil to stand up to the heat demands of more extreme use.

Over the last few years we have seen a trend of lighter oil for new engines. The common 10W/30 of a decade or two ago has become a 5W/30, 5W/20, or 0W/20. Many manufacturers use 5W/20 or 0W/20 oil at the factory (even in trucks) and recommend it for everyday use for many light vehicles. Feel free to try different grades until you find one that suits your particular situation.

Changes in viscosity

Lots of things can affect the viscosity. Adding anything foreign to your oil can change its viscosity — some types of aftermarket additives cause a high viscosity, and some solvent-type additives can cause the viscosity to thin out. Another thing that can change a viscosity is contamination. Moisture and fuel can change the viscosity, depending on the contaminant and how long it has been present in the oil. Excessive soot and antifreeze often increase an oil’s viscosity. Exposure to excessive heat (leaving the oil in place too long, engine overheating) can increase the viscosity of engine oil, though leaving ATF in place too long can cause it to get thinner, not thicker. Some engines will shear the viscosity down no matter what oil you use.

When your oil’s viscosity comes back as either lower or higher than the “Should Be” range, something is causing it. The key is to find out why and repair your engine or adjust your driving habits accordingly, and to correct the viscosity and optimize your engine’s efficiency. Test your oil while figuring out what to use. Your wear metals don’t lie!

 

By |2024-09-19T10:39:52-04:002023|Articles, Lab Tests|Comments Off on Oil Viscosity

Soot: How Much is too Much?

Blackstone offers percent soot testing as an optional test above and beyond what we do in the standard analysis. It’s something many of our diesel customers have shown interest in. It can be challenging for people to understand how much soot is a problem and how much is normal, so in this article we’ll shed some light on our testing process and what it can tell you about the health of your engine.

Here’s a brief run-down of how it works. We use an FTIR (Fourier Transform Infrared) spectrometer to measure the  percentage of soot present in an oil sample. Essentially, soot raises the absorption rate of the infrared light spectrum and when an infrared beam is shot through the sample, the rate of absorption is measured and quantified. The lab operator ensures the machine is running properly by performing a series of check standards, including calibrating against a known 2.0% soot sample to ensure accuracy.

Okay, nap-time is over. So what is soot and what impact can it have on an engine? Soot is a natural by-product of internal combustion. Soot is the reason diesel engine oil turns black, sometimes only after a few miles. When it becomes excessive it can thicken up the viscosity, leave deposits on wearing components, and ultimately clog a filter (or perhaps worse, an oil passage). Excess soot can have an abrasive component and has the ability to stick to wearing surfaces, potentially increasing oil consumption.

A used sample from a Volkswagen 2.0L TDI. Soot reads at 0.4%.

We like to see soot at 1.0% or less; anything higher than 2.0% to be cautionary. So what does that mean to you? In layman’s terms, excess soot can indicate a combustion problem. Pinpointing that problem (or problems) can be a bit more difficult, but there are a couple fairly simple things to check if you think you’re seeing excess (or just more than normal) soot in the oil. Make sure that the fuel system is maintained and properly calibrated so that the injectors are operating at peak efficiency and with a proper air/fuel ratio. Also check for intake leaks and make sure that the air filter is clean and serviceable. Make sure injection timing is set correctly as well. Change the oil and filter regularly to prevent soot build-up.

It’s always possible that excess soot is due to a mechanical problem too, and that’s obviously a bit more involved than just changing the oil or swapping out a dirty air filter. Excessive ring clearance is a common cause of excess soot. Keep an eye on oil consumption as increases in that area can also show a developing ring problem.

Several of our customers have installed by-pass filtration systems in an effort to keep soot lower and the oil cleaner in general, and that can be effective. Employing an oil analysis regimen can also be helpful in assessing wear metals and other contamination like soot…but as a Blackstone customer, you already knew that!

By |2024-09-19T10:22:07-04:002023|Articles, Gas/Diesel Engine, Lab Tests|Comments Off on Soot: How Much is too Much?

What is a Flashpoint?

We use the flashpoint test to determine how much fuel dilution is present in your oil. Technically speaking, the flashpoint is the lowest temperature at which a liquid will generate sufficient vapor to flash (ignite) when exposed to a source of ignition or fire. In other words, at what temperature do the vapors coming off your oil catch fire? For most gasoline oil samples, it’s around 380°F. For most diesel samples, it’s about 410°F.

Each brand/type of oil has an expected “should be” value for the flashpoint, and when the lab test results read lower than that value, it shows a contaminant in the oil. Most often that contaminant is fuel, though other things can affect the flashpoint too, such as solvents (like engine cleaner additives) or water. We calculate the amount of fuel present based on where the flashpoint is relative to the “should be” value and the volatility of the type of fuel you’re using in the engine. Alternative fuels like B20 can have a different impact on the flashpoint than standard fuels, so be sure to let us know if you’re using anything other than standard gas/diesel as fuel in your engine.

Based on the margin of error for the methodology we use for measuring the flashpoint, the lowest fuel dilution value you’ll see on one of our reports is <0.5%. That’s our way of essentially saying that no measurable fuel dilution was detected in the oil. If the flashpoint of your sample reads the same as the “should be” value, we’ll report a “TR” (or trace) of fuel dilution. In other words, it’s likely there was a very small amount of fuel dilution present, but not enough to quantify. After that, you’ll see fuel dilution reported as a percentage of the sample. The most fuel our test can accurately read is 10%. If you have more than that, we’ll report >10% (and you should head to a mechanic).

How much fuel is too much? It depends. We have different allowances for different types of engines based on their typical operational conditions, and we share those values in the “should be” column. If you’re constantly exceeding those values, you might consider the type of operation the engine sees just before sampling. Are you idling the engine to warm it up? Have you just been running errands around town? Is the dealer changing your oil (and starting your engine briefly to pull the vehicle onto a lift)? That type of operation can introduce a little fuel dilution into the oil and as such isn’t necessarily a concern. If the amount of fuel in the oil is consistently above 2.0-3.0%, or if it’s increasing from sample to sample, that might indicate a more serious problem.

A little fuel dilution – the type you’d get in your oil from operational factors — will cook out of the oil once the oil reaches operational temperature. If there’s a fuel dilution problem, though, you’ll see telltale signs: a rising oil level, high fuel dilution readings in testing, a strong fuel smell to the oil, and possibly low viscosity readings and increasing wear as well. The concern with excessive fuel dilution is that it dilutes and thins the oil, which might limit the oil’s ability to effectively protect and cool your engine.

By |2024-09-19T10:43:23-04:002023|Articles, Lab Tests|Comments Off on What is a Flashpoint?

Spectrometry: The Marvel of the Lab

We occasionally get questions about how oil analysis works. You send your oil to us and you get a report back, but what happens in the lab? Is it magic? Some sort of voodoo? What happens to the oil that allows us to determine what’s in it?

At the heart of oil analysis is a spectrometer. It is the machine that allows us to quantify wear metals, additives, and contaminants in oils, making oil analysis a useful service in predicting potential problems in engines and machines of all types.

The plasma in the process

A spectrometer can be aimed at a star to determine what elements may exist in the star, if all the star’s light is being generated by the star (rather than reflected off the star). Spectrometry works on the same principle, but we have to first create the light. We do this by converting the actual oil into light energy. This is done by injecting the oil into something called plasma. You can think of plasma as a flame, since it looks like a green flame. But plasma is much hotter than a normal flame, and it needs to be in order to do its work. The plasma we use has a temperature of about 10,000° C. Plasma is actually the highest state of energy (the states of energy being solid, liquid, gas, and plasma).

Different types of plasma have been used over the last several decades that oil analysis has been commercially available. Early on, plasma was electrically generated as an arc. The drawback of an electric arc is that as it is generated, it can vary in intensity because the electrical part generating the arc erodes. The erosion causes changes in system resistance, resulting in variable plasma intensity. When using plasma to read the intensity of light from elements, it’s best if the plasma’s light is constant. Otherwise, errors can be introduced into the process.

Inductive coupled plasma, known in the trade as ICP, works by converting argon gas into plasma. So long as the argon pressures and flow rates don’t change, and the power causing the plasma’s generation is steady, the intensity of the plasma stays the same. This gives ICP spectrometry the industry gold star for incredible accuracy.

The rainbow connection 

To understand what happens next, think of a rainbow. When you see a rainbow, what you’re really seeing is moisture droplets in the air acting as prisms to separate the various wavelengths of light into individual colors that can be seen by the human eye.

A spectrometer uses this same principle. A prism inside the machine takes the “light” that’s generated by injecting the oil through the plasma and separating it into the different light frequencies of the elements. Each beam of light is then directed to a tiny slit on what is called an aperture plate. The aperture plate is a thick metal device, about 10 inches wide by 18 inches long, and the slits engraved in it are finer than a human hair. The aperture plate allows us to measure the intensity of each beam, using a device known as a photomultiplier tube.

A photomultiplier tube senses light and reacts to its intensity by vibrating faster as the light intensifies. Voila! By placing a photomultiplier tube at one of the slits on the aperture plate, we can get a digital readout of the intensity of light for any particular element in an oil sample. However, as amazing as this process is, the spectrometer is dumb as a box of rocks if the operator doesn’t install a program that will let the computer strut its stuff.

Let’s recap what we’ve learned so far. We know that argon is turned into extremely hot plasma, which burns the oil completely, turning it into light waves. The spectrometer refracts this light with a prism and then optically directs the distinct light frequencies of each of the elements to a slit in an aperture plate. A photomultiplier tube travels to each of the light slits and “reads” the amount of light there by vibrating. This marvelous arrangement still can’t tell us what we want to know without further instructions.

Setting the standard

The next step in determining what is in the oil (and in what quantities) comes in the form of “standards.” You can think of standards like your daily vitamin. Just as you can buy vitamins that contain a certain amount of iron, the iron standard (which is a liquid) contains a certain, “standard” amount of iron. You can buy standards that contain however much of any element you need.

Each standard has a certain amount of a particular element in it. If we want to know, for example, how much iron is in an oil sample, we need to give the spectrometer something to measure against. This allows it to know how many vibrations to count to determine how much iron is present. The first standard we use is a blank — that is, a zero standard — that has no iron in it. At the iron slit in the aperture plate, the photomultiplier tube vibrates at a certain rate per second. Then it remembers that rate as zero. Then, for example, a 100 ppm iron standard is fed into the machine, and again the photomultiplier tube vibrates, but this time at a faster rate. The machine remembers this rate is equal to 100 ppm. Setting the standards in the spectrometer is a process is known as calibration, and it’s something we do many times each day. It allows the spectrometer to know what standards it should be measuring against.

The spectrometer records each element’s information into a chart and uses the chart to determine how much of each element is an in actual oil sample. This process, where the photomultiplier tube travels to each slit and vibrates, repeats for each element we want to measure in an oil sample. The vibrations are translated to ppm (parts per million) readouts using the charts that were set up by the standards. Suddenly the spectrometer looks like a genius! It vaporizes the oil and tells us how much of each element is present in the sample.

There are 72 elements on the periodic chart that make enough light, when injected into the plasma, to be read on a spectrometer. Some elements make lots of light and are easy to analyze accurately. Others, like tin, make very little light and are more difficult to accurately gauge. This, along with differences in standards, calibration, and the set-up of different spectrometers, is the reason that you may find differences in the results coming from different laboratories.

A spectrometer is like your television or your car — you don’t have to understand how it works to use it. There is only one answer to how much iron, copper, or any other element may exist in an oil sample. We think ICP spectrometry has the best shot at giving you the correct answer. It is accurate and repeatable, which is a requirement for giving you an accurate appraisal of how your engine is doing mechanically based on its wear properties.

By |2024-09-19T10:44:38-04:002023|Articles, Lab Tests|Comments Off on Spectrometry: The Marvel of the Lab
Go to Top