The Lower Unit Blues

I wouldn’t consider myself a nautical man, though growing up fairly close to a lot of really nice lakes, I was able to go fishing, tubing, and water skiing every now and then. These are all things I still enjoy though this type of hobby generally requires a boat. My grandfather gave me a fishing boat many years ago and while that doesn’t need much maintenance, I do use my step-mother Kathy’s boat once or twice a summer and that’s a different story.

The boat & its lower unit

The boat is a 1994 Starcraft 1700 with a 90 HP Mercury 2-stroke engine. It’s large enough to carry six people comfortably and pull a tube around the lake. She bought the boat used in 2016 and it had obviously not seen a whole lot use or maintenance in the preceding years, so I decided to help out with what little maintenance I could, which basically involved changing the oil in the lower unit.

Now for those of you who are even less nautical than me, the lower unit is a gear box that transmits power from the engine to the propeller. Technically, it can be called a transmission, but that doesn’t really apply because it only has two gears—forward and reverse—and there isn’t any sort of complicated clutching system involved to change the gears. It’s basically a gear box, which tends to be extremely reliable and would have a super long life if it wasn’t for the environment in which it has to operate—underwater.

The water blues

As you might have guessed, water contamination is a major problem with these units and when I changed the oil in Kathy’s boat, I could tell that water was getting in.

Now, you don’t have to have worked at an oil lab for 20+ years to know what serious water contamination looks like. Think milkshake, with the main color being whatever the color of the oil was to start with. When an oil with red dye gets water in it, it tends to look like strawberry milkshake. If the oil starts out blue, you end up with a blueberry milkshake. Start with brown oil and you get chocolate.

So the very first time I changed it, I grabbed a sample as the oil was draining out to see how bad the water contamination was (see Figure 1).

Oil from the lower unit, showing a clear separation between the oil and a layer of water contamination

Figure 1: Not good

Here at the lab, even though an oil might obviously have water in it, we don’t just use the color to make that call; we use an actual ASTM method to identify water. The test is called the “crackle test.”

For that, you drop a small amount of oil onto something hot (400°F) like a brass cup, and if the oil sizzles/crackles, then yes you have water. (We get the percentage from the insolubles test but that’s another matter.) If you are crunched for time and can’t send your oil in to us, you can actually do this test at home in your kitchen using an old pan. Just don’t cook up a batch of eggs on it afterwards.

The good thing about lower units is, if you keep the oil changed and no water is getting in, they will last for a very long time. And if water is getting in, frequent oil changes will keep any damage to a minimum. However, if you neglect one that does have water leaking in, the water will cause the steel parts to rust and that will allow for all kinds of bad things to happen. In my situation, I knew the lower unit in Kathy’s boat was letting water in and that something should have been done about it, but life got in the way.

Live & learn (and hopefully don’t wreck)

So this year, when I went to try to put it in the lake I got quite the surprise when I found it the motor would not shift out of forward. Of course, I didn’t know this until I was trying to back the boat away from the boat trailer at the ramp. Needless to say, I was very confused as to why the boat was going forward when I had it in reverse, and Kathy was even more confused (and profane) when she thought the boat was going to end up in the bed of her truck. I did start the engine prior to heading to the lake and it was running like a champ. I just didn’t think to check to see if the motor would go into reverse, or even shift at all. Live and learn.

So now the lower unit is in a partial state of disassembly in my garage, and let me tell you—nothing is a sadder sight in the middle of boating season. I find myself struggling with shame and regret about not having changed oil in it sooner, or better yet, just fixed the seal that was letting water in in the first place. My only hope is that you don’t let the same thing happen to you. Change that lower unit oil and sleep easy at night. Meanwhile, I’ll be learning the real meaning of the word boat – Bust Out Another Thousand!

By |2024-06-04T14:55:42-04:002023|Articles, Marine|Comments Off on The Lower Unit Blues

How Often Should You Change Your Oil?

Change is inevitable, right? But not as inevitable as it used to be, at least for your engine oil. When it comes to the questions we get every day, right up there with “What kind of oil should I use?” is “How often should I change my oil?” Happily, the answer for most people is: Not as often as you used to.

What other people will tell you

Back in the day, everyone knew you changed your oil at 3,000 miles or three months, whichever comes first. Wait, did I say back in the day? Lots of places still tell you that’s how often to change it, and not surprisingly, the places you’re hearing this are oil change places that make money from you coming in regularly. We’re here to help cut through the noise, and hopefully you’ll believe us because hey, we’ve got science on our side. The answer to how often you need to change your oil is: It’s different for everybody.

Owner’s manual

Most cars and trucks (motorcycles, boats, etc.) have guidelines listed in the owner’s manual that outline certain driving conditions and how often to change the oil.

The problem is, sometimes the conditions they outline as “severe” are laughable. We’ve seen manuals that say if you’re doing primarily city driving, that’s severe. Call me silly, but I’d say “severe” should count as something that’s out of the ordinary for most people. Most people drive to work and back. Most people drive to the store, go to school, take the kids to school, whatever.

Severe operation, on the other hand, could legitimately be something like lots of operation on dusty roads, towing constantly, driving really fast in a really hot or really cold place, or driving up and down mountain passes. Under these conditions, we could see needing to change the oil more often. But again, it really is a case-by-case thing. City driving for me, in Fort Wayne, Indiana, is different from city driving in LA.

The point is, despite the best intentions of the people who write the guidelines, how often you should change your oil really depends on you, your engine, how you drive, and where you drive. One caveat: As long as your engine is under warranty, you should change however often the manufacturer says to. That way if something goes wrong, they can’t blame you for lack of maintenance.

OLM

Most new engines also come with an oil life monitor to tell you when to change the oil. This is a good system, and even if it’s not 100% accurate all the time, it’s better than the 3,000 miles or three months system.

Different oil life monitors take different things into account. We’ve been told that certain German automakers changed from basing theirs on variables such as cold starts and RPMs to basically counting down the amount of fuel used. Some have a sensor in the oil that estimates particulates in the oil. Some monitors seem to give better recommendations the longer you use them. All this is fine and it’s better than nothing, but there’s also oil analysis. Guess which method we like best for determining how often you should change the oil?

What we look at

When you send in a sample, we ask on the oil slip if you’re interested in extended oil use. What we want to know is, do you want to run your oil longer than you currently are? We have found that people are often changing their oil too soon. As you know there is not one oil-change interval that’s perfect for everyone, so what do we take into account when we do recommend longer oil changes?

Metal

If you’ve seen our report, you know that we keep a database of all different engine types. We average their wear and then compare that to your sample to see what’s reading high, what’s normal, and what’s better than most. We like it when you send along notes. The more you tell us about how you’re driving or any specific conditions that might affect the sample, the better the recommendation we can give you.

If wear is above average, we always look for reasons that might explain why. For example, say your metals are generally higher than average but you’re also running your oil longer than average. We take that into account and give you an estimate on how much longer we think you can go for the next oil change.

We don’t like to take too big of a leap. We wouldn’t, for example, tell you to go from 5,000 to 10,000 miles because you might send in a 10,000-mile sample and have lots of wear, and we wouldn’t know where the tipping point was. But we might tell you to go 7,500 miles next, and if things look good at that point, to go longer after that.

Some people automatically think having more wear than average is bad, but that’s not necessarily so. If there’s a good reason for the wear, and if there’s not so much metal that it’s making the oil itself abrasive, we’re happy to let a little extra metal ride. The question is, are you okay with it? In the end our recommendation is just our opinion, and you should do whatever you’re comfortable with.

Sometimes we suspect a problem and we’ll recommend a shorter oil change. Obviously shorter oil changes don’t fix a problem if one exists, but they do let you monitor the problem more closely and get the extra metal out of the system. Once a lot of wear builds up, the oil itself can become abrasive, which causes even more wear. It’s a cycle to avoid.

Contamination

We also look at any contamination that might be present in the oil. Obviously no contamination is the best, but your engine can tolerate small amounts of fuel and (sometimes) moisture without it being a serious problem.

Fuel is actually a very common contaminant. It mainly comes from normal operation and idling, and as long as it’s not causing any wear problems, we usually would recommend a longer oil run even with fuel present. But if fuel persists or the trend is one of increasing fuel with each oil change, we’d probably recommend cutting back on your oil changes for the reasons outlined above.

We don’t see water very often because modern engines are closed up tight. But we do see antifreeze, and when it’s present we almost always recommend changing the oil more often. Antifreeze destroys the oil’s ability to lubricate parts, which is why it starts causing poor wear so soon (usually bearing wear).

We also look at how oxidized the oil is with the insolubles test. Oil oxidation happens normally and for the most part, your oil filter removes the oxidized solids from the system just fine.

Occasionally something (excessive heat, contamination) causes the oil to oxidize faster than usual and the oil filter can’t keep up. In this case we would also recommend a shorter oil change, at least until you can figure out why it’s happening.

The insolubles test also helps us determine soot problems for diesel engines. If soot is excessive but everything else looks okay, we might suggest trying a longer run. Or if there is ring wear and other signs of poor combustion, we would probably tell you to cut back.

Operation

How you drive is another factor we take into account when we suggest your next oil change interval. If you and I both have the exact same Subaru engine except you go to the track regularly and all I do is drive to work and the store, then you might get a different recommendation than me. Or maybe you won’t — if your engine looks good and it’s faring well under the racing conditions, we might be running the same oil changes.

Or, if someone tells us their commute is a long highway drive every day, that person may be able to go a lot longer on their oil than someone with the same engine who drives two miles each way to work and back every day. It’s all in the numbers. The numbers don’t lie!

What about the oil?

Notice what we have not said we take into account: the brand you’re using and whether it’s synthetic or petroleum oil. When Jim started this company back in 1985 he came up with a line he liked to use: Oil is oil. We still stand by that today. The oil guys would have you believe otherwise, but brand really does not seem to make a difference in how your engine wears, or how often you can change your oil.

Well, okay, if you were using some guy’s oil that he “recycled” in the back of his garage from emptied-out oil pans that he filtered with a piece of cheesecloth, we might say in that case brand does matter. But as long as you’re using an API-certified oil, your engine probably isn’t going to care what you use. We like synthetics and we like conventional oil. In the end, what you use and how often you change your oil is completely your choice. We’ll give you our recommendation and you can do whatever you want with it. If you want to run longer on the oil despite having high wear, that’s totally fine. And if you have great numbers and you like changing at 3,000 miles, that’s perfectly fine too. It’s your engine, your money, and your life: change it when you want!

By |2024-09-19T09:19:01-04:002023|Articles, Gas/Diesel Engine, Marine|Comments Off on How Often Should You Change Your Oil?

How Often Should I Sample?

One of the most common questions we get asked is, “How often should I send in a sample?” and this is one that I tend to struggle with answering.

The businessman in me says at every oil change regardless, and while you’re at it, check your transmission fluid, differential fluid, and your wife’s/husband’s car. And don’t forget any air compressors, lawn mowers, wood splitters, etc. you may own. And your neighbor’s car was smoking a bit last time you saw it drive past, better check that too.

Unfortunately, before I start talking, my “realist” side kicks in and I usually say something like once a year, after you have some good trends established. But even that answer doesn’t always apply. What if you don’t drive your vehicle very often, or at all? Is it really necessary to test the oil once a year? The answer to that is once again not really. Though if you think you might have a problem developing, then it could be a good idea to sample more often than you normally would.

Old oil

We recently had a customer send in a sample of oil that was in an engine for 10 years and had not been run at all in more than 5 years — and amazingly enough wear metals were virtually identical to what we were seeing when he last sampled 10 years ago.

The only significant difference was at insolubles. These had gone from 0.2% to 0.0% after the 5 years of sitting. We figured the reason for this was gravity. All normal engine oils contain dispersant additives, and their function is to hold dirt and solids in suspension so they can be filtered out. Do they work? Absolutely, but asking them to work for a full five years is a little much. The good news is that the additives are still in the oil, so once the engine starts up and sees some use, those solids should be picked up and dispersed again.

So, if we can say with good certainty that the oil itself won’t go bad just sitting in an engine, you might wonder why it needs to be changed at all? The answer to that is contamination.

Contamination problems

Engine oil has maybe the hardest life of any oil application out there. Not only does it see frequent temperature swings of 150° to 200°F (65° to 90°C), but it will also get contaminated with fuel blow-by and a little atmospheric water as well.

Ideally the fuel and water will boil out once the oil gets up to operating temperature, but that contamination will add up over time and eventually cause the oil to start to oxidize. If you can pinpoint exactly when the oil will oxidize enough that it will start to affect wear or cause the oil’s viscosity to change, that’s the point at which you want to change the oil. If you test your oil on a regular basis, you can start to identify that point and that’s one of the reasons why we’re here.

So when is the best time to get a sample? The answer to that is: it depends.

Best time to sample?

If you just bought a brand-new car, the first oil is factory oil and while that oil will sometimes have an unusual additive package, it’s not that useful for finding a problem, or developing a normal wear trend.

Factory oil is typically loaded with excess metal from wear-in of new parts as well and some silicon from sealers used when the engine was assembled, and this stuff normally takes two or three oil changes to wash out.

So, while these samples aren’t useful as far as trends go, they are useful in finding problems in engines that have been recently rebuilt or had other major work done, and we always recommend testing those from the beginning. This is because if wear metals don’t drop from that initial oil fill, it can be the early indication of a problem.

It’s always a good idea to get a trend going while the engine is running well. A trend consists of three samples. Once we have that established and the engine is running perfectly, then it’s not really necessary to get a sample at each oil change and at that point it’s okay in most cases to go to a once-a-year sampling routine.

Once a year?

You might be wondering why once a year? The reason for that is two-fold. One: A lot of people (including myself) only change their oil once a year. It’s also the only time I crawl under my car and have the hood open. I consider it like an annual inspection and there are been numerous times that I have been on my back waiting for the oil to drain when I noticed another problem like a seeping freeze-plug or a torn CV boot. Two: It’s easy to remember.

However, the once-a-year rule doesn’t always apply. There are many vehicles out there that only see light use (maybe less than 500 miles a year), so not only can they typically skip changing oil on a yearly basis, then don’t need to sample every year.

Another factor is how important the vehicle is to you. If you rely on it for your business, or it’s the only vehicle you have and it’s getting up there in mileage, then sampling at every oil change might be a very good idea.

Engines speak before they fail

We can see problems developing in your engine long before they actually cause a failure, so you normally have some time to do something about any trouble we might spot. Still, like a lot of things in life, the earlier you know about problems the better.

We get as lot of samples from engines that have a known problem, so we test the oil and usually see poor wear, but telling how bad the problem is or how/when it started is hard without trends from when the engine was normal. We do have averages that give us a good idea how an engine should look overall, but they aren’t as valuable as trends when it comes to saying exactly what’s normal for a particular engine and the use it sees.

So there you have it, I’m actually saying you may not need our services as much as you might think. Some of the other business owners out there might call me crazy and I guess they’re right. But please, feel free to sample anytime you like. As you know there is nothing better than getting a glowing oil report on your pride and joy.

By |2024-09-19T09:34:43-04:002023|Articles, Gas/Diesel Engine, Marine|Comments Off on How Often Should I Sample?

Fuel in Diesels

For our last newsletter, we did an experiment where we actually tried to get fuel dilution to show up in the oil. Amanda’s Kia was our guinea pig, and she tried hard to get some fuel to show up but had very little success. She tried idling for ten minutes and she tried lots of city driving, but could hardly get anything more than a trace or so. Maybe that’s just a testament to Kia and their fuel system engineering, or maybe she was just unlucky. It’s hard to say. However, fuel dilution does show up for a lot of our customers and after the last newsletter, we received some e-mails asking for more information about fuel, especially in diesel engines with possible fuel dilution problems.

A little history

Diesel engines started showing up in pickup trucks back in the 1980s and while those engines didn’t particularly wear well, fuel dilution wasn’t really a big issue.

In the 1990s, these engines really started coming into their own. Wear metals improved and the oil changes started getting longer and longer. Ford started using the Navistar 7.3L Power Stroke and Dodge used the Cummins 6BT 5.9L, and both were excellent engines. They produced a lot of power and left very little metal in the oil to show for it.

GM used the Detroit Diesel 6.5L, and while that was a good engine and a lot of them are still on the road today, it tended to make a lot more metal than its competitors. It wasn’t until GM started the Isuzu 6.6L Duramax that it really had a world- class diesel that was every bit as good as what Ford and Dodge were using.

With this new generation of engines, we started seeing people run 5,000-mile oil changes regularly, where the old standard was just 3,000 miles. And oil changes have gotten longer and longer since.

These days it’s not uncommon at all to see those engines running 10,000 miles on the oil without any special oil filtration set-up. Of course, a lot of that is dictated by the type of use they see. This was also the carefree days before emission controls starting becoming mandatory.

For some of you, the words emission controls may make you turn away in disgust and I’ll admit, on my own truck engine (a gasoline powered GM 350), the emission controls haven’t gotten the attention the rest of the engine has. But really the idea isn’t really all that bad.

Piston powered aircraft engines don’t have any emission controls on them, but those engines are plagued by rust and corrosion because condensation from the air is allowed to enter through the breather. Modern gasoline and diesel engines don’t have that problem because their crankcases are sealed to the elements and that keeps corrosion to a bare minimum. It’s also one of the reasons you don’t really need to change your oil on a time basis anymore. We get a lot of questions about if an oil will last a year or not and the answer is almost always yes, because very little corrosion builds up on these engines.

Of course, gasoline-powered engines have had emission control systems on them since the 1970s and that means the engine designers have had a lot of time to get it right. When emission controls started appearing on diesel engines in 2005 and 2006, there were a lot of growing pains with that introduction. Couple that with the fact that competition brought about the need for more and more power, and now we started seeing changes in the oil samples, mainly at fuel dilution.

We first started seeing a lot of fuel when Navistar came out with the 6.0L Power Stroke in 2003. Those engines almost always had a lot of fuel in the oil, especially when they were new¾and when I talk about a lot, I mean 4% and 5%.

We weren’t sure exactly what cased this, but it was showing up in almost every sample we saw and this presented a problem for us because we had always considered 2.0% to be an “action” level of fuel. So what do you do when every engine starts showing more than 2.0% fuel? Do you start sending every owner back to the dealer saying there’s a problem? And what do you do if you see a lot of fuel dilution, but wear metals continue to look good?

So the 6.0L Power Stroke caused us to take a different look at fuel and how much of a concern it really is. No longer could we consider 2.0% is a major problem. Now we suggest that it’s only an issue if the oil level is rising on your dipstick, or if the amount of fuel we find in each sample is increasing. As it turns out, continual fuel dilution in the oil at around 2.0% to 3.0% sometimes is from a problem, but it should not be considered a major one and I know about that first-hand.

About my Passat

In 2004 my wife and I bought a Volkswagen Passat with the 1.8L turbo gasoline engine. Almost from the start, this engine was leaving a lot of fuel in the oil and I would look at the analysis results and just shrug my shoulders. The engine was running fine and wear metals were acceptable, but the fuel mileage was never quite a good as advertised. For me, that didn’t seem like a good enough reason to tear into the fuel system.

Shortly after we bought the Passat, Volkswagen set us a letter saying they would extend the engine warranty to 10 years or 100,000 miles due to sludging problems they were having. I suspected these problems stemmed from a lot of fuel dilution in the oil coupled with really long oil runs, but I’m not sure. The kicker for the extend warranty was I had to change oil every 5,000 miles and I had to use a VW-approved oil. Of course, they approved expensive oils like Elf and Total, and those aren’t on my approved list. My list includes oils that are on sale at Wal-Mart, so I decided to stick with my oils and just change the oil at 3,000 miles. So far the plan has worked but if it fails, I’ll be writing about how I rebuilt the engine myself (twice) in my Dad’s barn.

In the end, we haven’t done anything about the continual fuel in our Passat’s oil (except curse VW), but the engine is still running fine and is close to the magic 100,000-mile mark. When we hit 100K, we’ll unload it and get my wife the new car of her dreams (a white Jaguar S-type). So despite the fuel being present in every report, really the only problem this has caused is our MPG isn’t quite what it should be.

Back to diesel engines

So anyway, the fuel dilution problems in the 6.0L Power Stroke eventually got better and those engines now look as good as any we see, so they’ve changed something to solve the fuel problem.

Then came the next generation of diesels (the 6.4L Power Stroke) and the fuel problems started up again. It’s not uncommon to sees excess fuel in over 2% of the small diesel engine samples we see today, and when it shows up that often, it’s hard to say it’s a major issue. It shouldn’t really be there, but it doesn’t necessarily warrant a trip to the dealer either.

The source of the fuel dilution differs from one engine manufacturer to the next, though injectors and emission control systems appear to be the root cause of most of these problems.

For the new 6.4L Power Strokes, if it’s not an injector it could be another part of the fuel system, like a pump. The DPF (diesel particulate filter) regeneration process will also cause fuel to show up in the oil. Does that mean these new engines are junk? Not at all. It just shows they have some growing pains to work out and once that happens, the fuel dilution problems will eventually taper off.

Until then, don’t get too excited 2.0% or more of fuel dilution, but do watch for an increased oil level on your dipstick. While you may think an engine that makes oil is like the goose that laid the golden egg, it’s really a possible sign of problems down the road. Small amounts of fuel are okay, but if the oil level is rising or if we’re seeing more and more fuel in each sample you do, fuel could be a problem.

By |2024-09-19T10:05:40-04:002023|Articles, Gas/Diesel Engine|Comments Off on Fuel in Diesels

Protecting from Corrosion

Considering the relative inactivity of much of the general aviation fleet, it’s not surprising that corrosion is a hot topic. It’s also fodder for aviation oil makers to claim their oil is better than others at protecting engine parts from corrosion.

The frustrating thing when you can’t find the time to go flying is, your beautiful bird is languishing alone in a dark hangar accumulating rust on its parts and dust and bird doo on its wings. What to do?

If you can’t fly it, you don’t want to just ground-run the engine since it’s pretty well accepted that doing so may cause more harm than good. In the end, the path most often chosen is to “leave her sit.” But that’s the maddening part. You just know that corrosion has begun at the cylinders, cam, and lifters, as well as all the other parts that are parked above the engine’s oil level. “Dammit! Maybe I should go out and shoot some landings.” But you don’t. So the question still stands…what to do?

We get a lot of questions about which oil protects aircraft engines best from corrosion. If there were a sure answer as to which oil is best, someone would surely have come up with it. Since they haven’t, perhaps we should reconsider the question. Maybe what we should be asking is, “What can I do to prevent corrosion in my (not flown frequently enough) aircraft engine, regardless of the oil I use?”

Turned around that way, there may be an answer.

Water orbs

Oil and water don’t mix at the atomic level. Since there is no such thing as dry oil — both hot and cold oil suck moisture from the air like a sponge — the only way these dissimilar types of matter can coexist is for the moisture to ball itself up into minute spheres, so tiny that they can exist in suspension. If the water orbs get large enough they will precipitate, that is, fall out of suspension. But there is almost no limit to how tiny they can be. The longer the oil sits undisturbed, the more water it will accumulate.

Oil routinely has some moisture in it, usually at levels between 40–400 ppm. In amounts greater than that, it can start to make your oil look like chicken gravy. Once moisture sets in, heat and/or pressure are the only way to get it out. If you go out and fly for an hour, the oil temperature and agitation will dismiss the moisture droplets like unruly elementary students. The moisture accumulation process will start all over again once you pull idle cut-off, but at least you have the satisfaction of knowing that, at least for now, the fine film of oil clinging to the metal parts is not heavily populated with tiny balls of water.

Fighting corrosion

After you lock the hangar door, the dry (well, reasonably so) oil film doesn’t last long on all those parts that are parked about the oil level. If your engine is a dry-sump type, none of the parts are parked in an oil bath.

If you can’t fly, you might consider using a pre-oiler once a week to rebathe all the parts in oil. The oil from the pre-oiler will reach all parts that see oil pressure during engine operation. It would require only turning on the master and the oiler switch for a short while, no longer than it takes to check the lights and flaps during a preflight, a few minutes at most. The oil should reach all the way up into the rocker boxes and then drain to form a brief pool over the tappets and cam, parts that are notoriously prone to corrosion pitting in all but the most active engines.

After the pre-oiling dose, you could get out and pull the prop through a few blades (normal direction of rotation, of course) to ensure all moving parts rotate through a couple of full cycles. Further, you will be giving all the rod bearings an oily trip through the sump reservoir, for wet sump engines. (Some people are queasy about touching the prop, so running the starter is an acceptable alternative, if you have confidence in the integrity of the battery.)

Cold dousing all oil-wetted parts isn’t nearly as good as an hour’s flight, but it seems far superior to the ground run-up, or the more often chosen “letting her sit.”

By |2024-09-18T13:48:37-04:002023|Aircraft, Articles|Comments Off on Protecting from Corrosion

Fuel Contamination in Aircraft

Here in the northern latitudes autumn brings uncertainty about what to expect from the sky and wind each morning. Rain and overcast skies are frequent but counterbalanced by days when clear blue skies are accented with yellow sunlight that reflects the fall leaves and warms the spirit.

Those who fly in the winter months generally count the experience with mixed feelings. Cold toes and fingers are a certainty. So are hard-to-start engines and batteries that lack enthusiasm. But once the engine finally fires and the first BTUs of heat start filtering into the frosty cabin air, the whole experience can bring a smile to the face of the most determined pessimist.

The brakes may be stiff but they still work. Once you get to the run-up area, most of the breath-laden frost has cleared from the windscreen and you can stow the gloves. The sun streaming into the cabin does as much to warm things as the manifold heater. On lift-off, the rewards of winter flying come back to remind you why you do this in the first place. The prop bites the crisp air with authority. The dense air brings lift with a rush. Like the counter guy at the FBO said, “There’s a lot of lift going on out there today!” Indeed!

Understanding the gas

There are several reasons engines are hard to start in the cold. Parts are machined to operate easily in concert when they are at operating temperature. The further you get from that temperature—either hot or cold—the more interference there will be between interfacing parts. Poorer fitting parts increase internal engine friction.

Air-cooled aircraft engines typically run on SAE 50W oil when at operating temperature. Cold, the oil has the properties of molasses. The oil pump resists rotation. The oil resists being pushed around. The oil that starts out in the oil cooler may still be there when you land. If the surface air is cold, you know the air at altitude will be colder. It is not unusual to find the oil temperature at the bottom of the green arc, if it gets into the green at all. Pity the poor battery that has to coax all this reluctance into motion.

Mixture matters

Another reason cold engines are hard to start is the gas/air mixture is incorrect. The fuel system, whether carbureted or injected, is set up to operate at a given mixture for normal temperature operation, usually fifteen or sixteen parts air to one part gas. Cold cylinder walls condense gas from the mixture, causing the gas that’s left to become lean—far too lean to initiate normal combustion. Accordingly, engines of all types have an enrichment device to compensate when cold. For liquid-cooled land-based engines, a choke in the carb throat or an extra injector enriches the intake air. Both types of systems usually shut off automatically as the cylinder walls warm up, which usually doesn’t take long.

Air-cooled aircraft engines, on the other hand, have a primer. Even when carbureted, they won’t use chokes or have the acceleration pumps that are common for car and truck engines. Many aircraft engines that fire readily on zero or minimal prime on a sunny, warm day won’t even consider firing without prime in winter. If one squirt of prime works in July, it may take four to six in January.

If there is moisture in the first gasp of cold air that gets sucked into the cylinders, it can frost the plug electrodes. If this happens, no amount of priming or cranking (or swearing) will make any difference. The engine won’t fire until the frost is melted or otherwise eliminated.

Raw gas that condenses on the cold cylinder walls gets scraped down into the oil by the beveled oil control ring(s). It will mix perfectly with oil, so there is no good way to get it back out again unless you cook it out with heat and agitation (otherwise known as flying). If it is cold enough at the altitudes you fly, the gas from priming may still be in the oil when you land.

Problem or not?

But does gas in the oil really hurt anything? Hardly. It will cause a lower viscosity, but that may be an asset rather than a problem. There were WWII radial engines operating in the frozen north that were designed to inject gas into the oil before shutting down. The gas thinned the oil so that the engine could be cranked over in the morning with less resistance. After the engine got back to operating temperature, the oil returned to being an SAE 50 or 60W once the gas was distilled back out of the oil…sort of an automatic multi-weight oil before multi-weight oils were invented.

To say we find a lot of gas contamination in winter oil samples would be an understatement. We usually mention it because gas in the oil can show a fuel system problem. But that is rare in aircraft engines. We find a lot of moisture in winter oil samples too, and it goes into the same category as the fuel. Unless your aircraft engine is liquid-cooled, we don’t think the moisture is any more a problem than the gas.

When taking your sample, it’s ideal to have the oil warmed to operating temperature first, though if that’s not possible it’s best to just take the sample cold and not start the engine at all. Starting the engine but not flying it can introduce even more gas into the system. We realize an FBO mechanic won’t have the option of taking your airplane for a couple of turns around the pattern, even if he or she was qualified to do so, before draining the oil. Consequently, we turn up volatile gas and often moisture in your winter samples if you are flying in the cold. It only rarely points to a problem.

By |2024-09-18T14:04:47-04:002023|Aircraft, Articles|Comments Off on Fuel Contamination in Aircraft

How Often Should I Change My Oil?

When it comes to the questions we get here at the lab every day, right up there with “What kind of oil should I use?” is “How often should I change my oil?” Continental and Lycoming both have guidelines in place, and generally speaking it’s 50 hours for those with spin-on filters and 25 hours for engines equipped with oil screens. But as you know, way more than calendar time should go into determining how often you should be changing your oil. There’s not just one answer for everyone. The engine manufacturer’s guidelines are better than nothing, but there’s also oil analysis. Guess which method we like best for determining how often you should change the oil?

Inactivity

One of the biggest factors we use in determining how often to change your oil is how active the engine is. We used to say you need to fly ten hours a month to keep corrosion away, but a few years back we realized that people were doing fewer hours than that and still getting decent wear numbers. So we lowered our general threshold to five hours of flying a month as what we consider “active” for an aircraft engine.

The problem is, a lot of people don’t like to admit their beloved aircraft has been inactive. But it’s okay to admit it. We can almost always tell. We even have a little question on the back of the oil slip that says “Any inactivity or problems/suspicions?” Inevitably, someone will pen a big NO in that space when in reality, he or she let the plane sit for eight months, then flew it 10 hours in the span of a month. “No!” they protest. “It hasn’t been inactive! I flew 10 hours this month!”

Inactivity usually shows up as aluminum and iron, from oxides and wear at the pistons and cylinders, though other metals can show up too. Trust me, it’s okay to admit when your engine has been inactive. That’s generally an easier and more fun problem to have than a bona fide mechanical issue. When we suspect corrosion, we almost always recommend cutting back to a shorter oil change. While changing the oil more often doesn’t prevent corrosion from happening, it does allow you to 1) monitor the corrosion to make sure it’s not getting out of hand, and 2) get the metal-laden oil out of the system sooner, so not as much metal gets washed into the oil when you crank over the engine. Abrasive oil causes more wear. Even if you have to change the oil with just two or three hours on it, that’s fine. We’d much rather see that than a fill that sat a year, accumulated 20 hours, and was full of metal.

Metal

Of course, as an oil analysis lab we also look at how much metal your engine is producing. If you’ve seen our reports, you know that we keep a database of all the engines we’ve ever seen. We average their wear and then compare that to your own sample to see what’s reading high, what’s normal, and what’s better than most. We like it when you send along notes. The more you tell us about what’s been happening with the engine lately or any specific conditions that might affect the sample, the better our comments on your sample will be.

An engine that’s making more metal than average will usually need more frequent oil changes. That doesn’t fix a problem, if one exists, but it does help you to monitor it more closely and get the abrasive oil out of the system sooner rather than later.

Contaminants

The main contaminants in aircraft engine samples are fuel, water, and blow-by. Blow-by is hard to avoid ¾ all engines blow by to some extent. You want to see lead holding steady from sample to sample. If it’s increasing, we’ll often recommend shorter oil changes until you can figure out what’s going on.

Water can enter the system just from condensation in the air, though we don’t usually see more than a trace from that. And traces of moisture, while not ideal, probably aren’t going to hurt too much. They might accelerate corrosion if you’re not flying all that much, but usually a trace of moisture won’t cause too many problems. When more than a trace of water is showing up, and it’s showing up in every sample, it can be a sign of something else going on. Often, an incorrectly set-up air/oil separator will cause moisture in the oil. When we’re consistently seeing more water than normal, we’ll often recommend going to a shorter oil change.

Fuel is also a common find in aircraft samples. We recommend taking the sample hot to eliminate any normal traces of fuel and moisture, but sometimes people have to take a cold sample, which results in fuel. And that’s okay. As long as you tell us about it, we’ll take that into account when we write the comments and we probably would not recommend using a shorter oil change just for traces of fuel. You can also get fuel in the oil from excessive priming, and again, as long as it’s not showing up in every sample, this is usually something that does not affect wear and will clear up next time. If, however, we’re seeing a lot of fuel from sample to sample, it can be a sign of something else going on so we would likely recommend a shorter oil change until you can figure out what’s up.

Environment

Where you fly also affects how often you need to change your oil. Inactive engines in a dry place like Arizona can usually get away with keeping the oil in place longer than someone in Michigan or North Carolina. In fact, humidity can cause us to alter our standard less-than-5-hours-is-inactive rule. Someone in Georgia may be flying 8 to 10 hours a month and still getting signs of corrosion and need to change more often than someone with the same engine near a desert.

Acids

There’s a lot of talk out there about needing to change the oil more often due to acid build-up in the oil, and we’d say that’s a load of hogwash. In fact we did an article on that topic for our last newsletter. Basically we ran total acid tests on a whole slew of aircraft samples and only three out of 63 samples had a TAN (Total Acid Number) over 2.0. And 2.0 is still a low reading ¾ we consider anything above ~4.0 to be acidic. Never say never, but I predict pigs will be flying before we’ll tell you to change your aircraft oil because it’s getting too acidic.

What about the oil?

Notice what we have not said we take into account: the brand you’re using and whether it’s straight-weight or multi-grade oil. When Jim started this company back in 1985 he came up with a line he liked to use: Oil is oil. We still stand by that today. The oil guys would have you believe otherwise, but brand really does not seem to make a difference in how your engine wears, or how often you can change your oil.

Well, okay, if you’re using Joe Bob’s Oil that he “recycled” in the back of the hangar from emptied-out oil pans that he filtered with a piece of cheesecloth, we might say in that case brand does matter. But as long as you’re using an aircraft-certified aircraft oil, your engine probably isn’t going to care what you use. We like straight weights and we like multi-grade oils. In the end, what you use and how often you change your oil is completely your choice. We’ll give you our recommendation and you can do whatever you want with it. If you want to run longer on the oil despite having high wear, that’s totally fine. And if you have great numbers and you really like changing the oil often, we’re not going to send out the Blackstone henchmen to tell you to start running longer. Keep your own situation in mind and make your informed decision based on what’s showing up in the oil and filter/screen, what the engine monitors are telling you, and your own comfort level. It’s your airplane and your money!

By |2024-09-18T14:06:58-04:002023|Aircraft, Articles|Comments Off on How Often Should I Change My Oil?

Under Pressure! (Part 2)

In Part 1 of this saga, our flying club’s newly installed O-360 lost oil pressure in flight with a student pilot at the controls. After a brief landing then an immediate a go-around (you read that right), and a fair amount of sweat and tears – but fortunately no blood – we found the engine had digested an errant paper towel, which was blocking the suction screen.

Crud in the pan

The hard part begins

Now that we knew the engine actually did suffer a loss of oil pressure (it wasn’t just the gauge) and the filter analysis showed that some damage had been done, our next step was to figure how to proceed.

We consulted as many experts as we could and received suggestions ranging from “just go fly it” to “pull a cylinder and look for damage” to “overhaul it” and everything in between. The jury was out, and we had to decide whose suggestion to follow.

Lycoming has a convenient Service Bulletin about what to do if you find metal in the oil filter, so we started there. Service Bulletin 480F suggested, based on the amount and size of metal in the oil filter, that we remove the oil pan and check for metal. That seemed like a good idea; not only were we still troubleshooting mechanical wear, but also, we didn’t know how much paper towel was still in the engine.

It took two solid days of work to remove, inspect, clean, and reinstall the oil sump, which still had paper towel in it. Once that was done, after finding no large pieces of metal in the sump and being sure there weren’t any leftover paper towels in the engine, we did a 30-minute ground run then drained the oil, and cut the filter to check for metal.

Intestinal fortitude

The oil analysis was unremarkable, but the oil filter report noted 10-15 non-ferrous metallic flakes per pleat with a few dozen larger pieces that had scrape marks on them. So – a little better than

Metal from the filter, magnified in analysis

before, but certainly not clean. But this was only a 30-minute ground run compared to the 20-some hour sample. Were the improvements from the shorter oil change, or an actual improvement? We didn’t know.

Now, I’ve been an analyst at Blackstone for over a decade. I’ve helped countless customers diagnose their own engine issues and told people to go fly it and check back. But there isn’t any amount of intestinal fortitude that prepares someone for the reality of experiencing a problem, diagnosing engine damage, doing what you can to fix it, and know that the next step is to go flying and see how it goes.

The two A&Ps on the field agreed that if we made it past the first 10 hours (if) without any oil pressure issues, then we should be fine. “But watch that oil pressure,” they cautioned.

Going up

We took all the precautions we could: we went up in pairs (so one person could watch the oil pressure), we selected calm days, affording us four runway options for an emergency landing, and we stayed within glide distance of the airport for 10 long hours.

I am glad to say that those first 10 hours were uneventful. Oil pressure remained strong, the engine ran great, and we had no issues. With each hour that passed, our confidence grew, so we eagerly sent another oil and filter sample for analysis, hoping for hard data to bolster our confidence.

The oil analysis was unremarkable, but the filter – not great. Approximately 30 variously sized non-ferrous flakes were present per pleat, along with one piece of steel.

Not what you want to see

This wasn’t what we were hoping for, but this oil run was 10 hours long as opposed to the previous 30-minute ground-run sample. There was bound to be more metal, right? Regardless, there was still more metal after 10 hours than there was in our previous 50-hour samples, so we weren’t in the clear yet.

Our solution? Do another 10-hour oil run for an apples-to-apples comparison. At this point, with 10 hours of uneventful flying under our belt, our confidence was starting to grow, so we ventured out a little from the airport environment. After 10 hours, we sent the oil and filter for analysis, fairly confident that this second sample would reveal the improvement that was bound to come.

Instead, we received the disheartening news that “the overall quantity and size of the non-ferrous flakes was similar to the previous filter.” Dang.

Hard discussions

We debated what to do next. Are we throwing money away on oil and filters when we might need an overhaul anyway? Do we keep wasting filters when the nationwide filter shortage might ground us anyway? Do we run 25 hours, despite not seeing an improvement in the metals?

We reconsidered an earlier suggestion to pull a cylinder and look for crank/bearing damage, but that might raise more questions than answers: what should a 1500-hour crank/bearing look like? How will we know if the damage is excessive without pulling all four cylinders and comparing? And at that point why not just overhaul?

Opinions varied among our club members. One thought we were overreacting and that a paper towel couldn’t cause engine damage. Others of us were more cautious, remembering how little metal our engine used to make in 50 hours. As a group, we exchanged some vibrant text conversations as we decided how to proceed.

With our concern about irreversible, ongoing damage, we opted to do another short 10-hour oil change to try and limit further damage and get another good comparison to gauge progress. I was afraid that if this sample didn’t come back cleaner, we’d start considering exploratory surgery and watch the summer tick by from the ground.

Baby steps

We knocked those 10 hours out in less than a week and had results early the following week. I jokingly told my coworker that I’d bribe him with beer if he gave us a good enough report that we wouldn’t have to ground the aircraft for the summer.

Still with the metal

As it turned out, no bribery was needed: the oil analysis came back clean and the filter report contained good news: less metal than before. Finally! Maybe everything was going to be okay. Granted, we’re not totally out of the woods yet – we’re still monitoring and we’re going to change the oil in 25 hours, but at least we’ve got data that suggests we’re past the worst of it. If the numbers are good in 25 hours, then we’ll try 50. That night of the improved report was the best night’s sleep I’d gotten in months.

Lessons learned

Hindsight is always 20/20, as they say, but looking back I think there are several lessons to be learned.

First, when you’re troubleshooting a problem, do your research and get as much data as you can. It honestly shocked me how many different opinions we received. At one point I called Lycoming. They called me back several days later, and after listening to my story the tech said we needed an overhaul.

I replied, “Well in the week I was waiting for you to get back to me, we did a 30-minute ground run, tested the oil and filter, and we’ve since flown a couple of uneventful hours, as per SB 480 and we’re planning on flying a total of 10 hours before retesting.”

He said, “Okay, that’s good. Do that and proceed as planned.”

In less than five minutes he went from telling me to overhaul to “go fly.” There’s a vast dichotomy there. I get that there’s a lot of liability in aviation, but that just makes it harder to make good, educated decisions. We did a lot of research, gathered data, and consulted with as many people as we could to make the best decision for us. Do your homework.

Second, remember that you have many tools in your toolbox for diagnosing problems. Our oil reports came back clean all along – it was the filter analysis that was showing metal. Oil analysis measures the microscopic particles in the oil; the filter/screen is where you’ll see visible metal. Always cut your filter open, and use oil analysis in conjunction with other tests (like borescope and compression checks). The more data you have, the better decision you can make.

Third, as we said last time – trust your gut. If your intuition tells you something is wrong, don’t ignore it. But the reverse is also true: after all those hours of flying the pattern with strong oil pressure, good RPMs, and normal oil temps, we had a strong feeling that our engine was going to be okay – we just had to wait a few oil changes for the data to support our intuition.

And last but certainly not least – keep the damn paper towels far away from your engine!

By |2024-09-18T14:21:50-04:002023|Aircraft, Articles|Comments Off on Under Pressure! (Part 2)

Pre-Buy Samples: The Art of the (Craigslist) Deal

Taking a sample before buying a new plane or boat is common practice in the aviation and marine industries, and it’s just as useful for anyone looking for their next car, truck, or motorcycle. If you’re anything like us, you probably spend an unhealthy amount of time browsing the local classifieds and Craigslist hunting for the elusive bargain. And although oil analysis can’t stop you from making a wire transfer to your new foreign royalty business associate, it can help you avoid buying a total lemon, and maybe even calm your nerves on the initial drive home.

Pulling a sample before plunking down the dough is a good move. We’ll test the oil for excessive amounts of metal, contamination, and solids. We compare your results to our database of samples from similar makes/models, giving you a good look at how internal parts are getting along, and if there are any looming problems driving the current owner to sell you their beloved ride. We’re familiar with common problems for certain engine models and years, and we know how different issues look in analysis.

It can be tricky to gauge whether excess metals are from poor wear or from how the engine has been used, especially if you don’t know how long the oil has been run. But even if the oil was recently changed, we can still often see evidence of serious problems. Maybe coolant has just started getting into the oil, but there’s not yet enough to give the oil that telltale milkshake appearance. It takes a pretty bad internal coolant leak to cause a visual change to the oil, but it doesn’t take much coolant to show up in analysis.

You’ll also learn the oil’s viscosity range, which can show if the current owner was using the correct grade. Analysis will also pick up on things like dirt from an intake leak or excess fuel from an injector issue. We always point out any potential problems in the report comments, and try to provide possible reasons for abnormal findings in the comments to help you make sense of the results.

Sampling

Most private owners and dealerships will allow you to collect a sample, at least with a bit of persuasion. The current owner has a vested interest in the health of their vehicle, and offering a copy of a report might help even if you don’t go through with the purchase.

We sell a vacuum https://www.blackstone-labs.com/products/vacuum-pump/pump so you can take a sample through the dipstick right then and there, while you’re looking at the vehicle. Samples can also be taken by loosening the oil filter or drain plug enough for some oil to drain out — just be sure to clean the area around the sample collection point if you go this route. If a seller refuses to let you collect a sample without good reason, that alone might be the red flag that sends you running.

Getting results in a hurry

We know you’re working on a tight schedule to make the deal happen, so if you don’t have a kit on hand when you go to look at your new ride, don’t fret. You can send the oil in any clean, plastic container with a screw-on lid. Just be sure to collect enough oil for testing (about 100 mL or 3 ounces, which is a little less than half a cup), and package the sample appropriately so it doesn’t leak in transit. The same information slips included in the kits can be found on our website. We appreciate all the info we can get about a sample, as it helps make sense of the results so we can provide the best possible report in return.

Buying a used vehicle can be an adventure, and we’re here to help you make the most informed decision possible!

By |2024-09-19T10:17:51-04:002023|Articles, Gas/Diesel Engine, Marine|Comments Off on Pre-Buy Samples: The Art of the (Craigslist) Deal

What is a Flashpoint?

We use the flashpoint test to determine how much fuel dilution is present in your oil. Technically speaking, the flashpoint is the lowest temperature at which a liquid will generate sufficient vapor to flash (ignite) when exposed to a source of ignition or fire. In other words, at what temperature do the vapors coming off your oil catch fire? For most gasoline oil samples, it’s around 380°F. For most diesel samples, it’s about 410°F.

Each brand/type of oil has an expected “should be” value for the flashpoint, and when the lab test results read lower than that value, it shows a contaminant in the oil. Most often that contaminant is fuel, though other things can affect the flashpoint too, such as solvents (like engine cleaner additives) or water. We calculate the amount of fuel present based on where the flashpoint is relative to the “should be” value and the volatility of the type of fuel you’re using in the engine. Alternative fuels like B20 can have a different impact on the flashpoint than standard fuels, so be sure to let us know if you’re using anything other than standard gas/diesel as fuel in your engine.

Based on the margin of error for the methodology we use for measuring the flashpoint, the lowest fuel dilution value you’ll see on one of our reports is <0.5%. That’s our way of essentially saying that no measurable fuel dilution was detected in the oil. If the flashpoint of your sample reads the same as the “should be” value, we’ll report a “TR” (or trace) of fuel dilution. In other words, it’s likely there was a very small amount of fuel dilution present, but not enough to quantify. After that, you’ll see fuel dilution reported as a percentage of the sample. The most fuel our test can accurately read is 10%. If you have more than that, we’ll report >10% (and you should head to a mechanic).

How much fuel is too much? It depends. We have different allowances for different types of engines based on their typical operational conditions, and we share those values in the “should be” column. If you’re constantly exceeding those values, you might consider the type of operation the engine sees just before sampling. Are you idling the engine to warm it up? Have you just been running errands around town? Is the dealer changing your oil (and starting your engine briefly to pull the vehicle onto a lift)? That type of operation can introduce a little fuel dilution into the oil and as such isn’t necessarily a concern. If the amount of fuel in the oil is consistently above 2.0-3.0%, or if it’s increasing from sample to sample, that might indicate a more serious problem.

A little fuel dilution – the type you’d get in your oil from operational factors — will cook out of the oil once the oil reaches operational temperature. If there’s a fuel dilution problem, though, you’ll see telltale signs: a rising oil level, high fuel dilution readings in testing, a strong fuel smell to the oil, and possibly low viscosity readings and increasing wear as well. The concern with excessive fuel dilution is that it dilutes and thins the oil, which might limit the oil’s ability to effectively protect and cool your engine.

By |2024-09-19T10:43:23-04:002023|Articles, Lab Tests|Comments Off on What is a Flashpoint?
Go to Top