Aircraft Oil: Go Ashless or Go to the Repair Shop

Any of you flying air-cooled aviation engines should be familiar with the phrase AD oil or Ashless Dispersant oil. These are special oils designed for aircraft engines and their use will help protect again pre-ignition and detonation. But what exactly does ashless mean?

Basically when you burn the oil, it will completely disappear and leave no significant ash behind. For non-ashless oils, most of the ash left behind when you burn the oil is from additives in the oil itself. Automotive and diesel engine oil designs for liquid cooled engines will contain a lot of additive that are is ashless and it’s not a problem in those types of engines because they don’t typically run hot enough to burn the oil.

Air-cooled aircraft engines are another story. In those engines, it is common for certain engine parts to reach temperatures at which the oil can burn. If a non-ashless oil was used, then deposits from the left-over ash could end up sticking to valves and ring lands. Those deposits could lead to hot-spots in the combustion chamber and those commonly cause pre-ignition.

The dispersant part of AD means there is additive present that is meant to hold solids in suspension so then can either be filtered out, or drain when the oil is being changes. If this additive is not present, it would be a lot easier for sludge to build-up in your engine during normal operation.

While the use of ashless oils won’t necessarily prevent all of the problems associated with pre-ignition and detonation, it is one easy way to help protect your engine from these dangers.

By |2024-09-18T14:04:07-04:002023|Aircraft, Articles|Comments Off on Aircraft Oil: Go Ashless or Go to the Repair Shop

Which Oil is Best?

We get lots of questions every day here at Blackstone, and the most common question we hear (after “Do you have my sample?”) is, “What type of oil should I use?”

Because we’re an independent laboratory, we don’t recommend any specific oil brands. We always recommend using an oil grade recommended for your engine by the manufacturer and a brand that fits your budget. But beyond that, we find that brand makes very little difference. If there were an oil that consistently out-performed the rest of them, we’d have no reason to keep that information secret, but we just haven’t found that oil yet. 

You can go into any mass retailer (Wal-Mart, Meijer, AutoZone, etc.) and buy a 5W/30 (or any other grade) that will perform well in your engine. One of the best-kept secrets of the oil industry is that these store brands are actually the same, quality oils that are produced by the major oil companies. The only difference between these products and the major company brands is the name on the container and the price. Don’t believe us? Try running your own experiment: do a sample on Oil A after a known number of miles, then do a sample on Oil B and compare the wear levels. You may see a little fluctuation, but it’s very rare for one oil to make a significant difference in an engine’s wear patterns. 

What does Blackstone like?

But wait! We do actually have a preference when it comes to buying oils for our personal use engines. That preference however, has little to do with brand names. We tend to choose oil that does not contain sodium as an additive. Sodium is one of the markers for antifreeze contamination and when it’s present in the oil, that can make it harder to see coolant when it’s present. 

What about after-market additives? Some of them contain unusual compounds that can make it difficult for our analysts to determine if your engine has a mechanical problem. One such additive contains a lead-copper compound. Both lead and copper are metals common to bearing inserts. If you’re using an additive with lead and/or copper in it, it is difficult to tell whether those elements are coming from the additive or a problem with the bearings. There’s another potassium-boron-sodium compound that can mimic coolant contamination in testing. Some of these additives linger for a few oil changes too, so even if you haven’t used them recently, they might still be affecting your oil analysis results.

If you are interested in having your engine oil analyzed, you will receive a better analysis if you avoid oil and after-market additives that use elements we need to see clearly to do a thorough analysis. If you want to use an after-market additive, that’s fine, just let us know about it on the information slip provided with the sample.

By |2024-09-19T10:18:58-04:002023|Articles, Gas/Diesel Engine, Marine|Comments Off on Which Oil is Best?

About Aircraft Oil

Lots of people want to know: what’s the best type of oil to use in an aircraft engine? We see wide variations in engine wear depending on a variety of things: the cylinder type, how the engine is operated, and the environment it’s flown and stored in. What we don’t see a making a difference is oil brand. There might be a correct grade of oil, depending on how and where you operate your engine, but there is no correct brand.

When you change the oil in an air-cooled aircraft engine, the only oil you can safely use is an aircraft-use oil. To use any other type of oil is to invite premature failure of the engine due to detonation. Beyond that, it matters very little what brand of oil you’re using.

All aircraft-use engine oils on the market today (that we know of) are mineral oils, i.e., refined, petroleum-based oils. Some of them have an additive in them to aid in scavenging debris and carrying it to the filter or screen. These are called ashless dispersant (AD) oils. Without the additive, they are called mineral oils.

We measure the viscosity at 210°F, which is in the neighborhood of your engine oil at operating temperature at cruise. W100 oil is an SAE 50 oil at operating temperature, and so are 15W/50 and 20W/50. The only difference in the multi-grade oils is the addition of long-chain polymers (viscosity improvers) that cause them to be more viscous at higher temperatures. At ambient temperatures the oils act as an SAE 15W or SAE 20W oil to allow your engine to spin over more easily, but at operational temperature, the oil behaves as an SAE 50W.

Tradition would have you using mineral oil during wear-in of a new or overhauled engine, and then changing to an AD oil after two or three oil changes. While we aren’t exactly sure of the reason for this procedure (some theories suggest it helps with ring seating, though it could also just be held over from the days of yore), it’s fine to follow the engine manufacturers’ recommendations. After that, it doesn’t much matter which brand of oil you select. As long as you’re running an aircraft engine oil, the brand and type of oil makes very little difference in your engine’s wear patterns.

There are many variables that determine how an aircraft engine wears. We consider the oil type to be the least of these variables (if it has any significance at all).

By |2024-09-18T14:24:34-04:002023|Aircraft, Articles|Comments Off on About Aircraft Oil

Spectrometry: The Marvel of the Lab

We occasionally get questions about how oil analysis works. You send your oil to us and you get a report back, but what happens in the lab? Is it magic? Some sort of voodoo? What happens to the oil that allows us to determine what’s in it?

At the heart of oil analysis is a spectrometer. It is the machine that allows us to quantify wear metals, additives, and contaminants in oils, making oil analysis a useful service in predicting potential problems in engines and machines of all types.

The plasma in the process

A spectrometer can be aimed at a star to determine what elements may exist in the star, if all the star’s light is being generated by the star (rather than reflected off the star). Spectrometry works on the same principle, but we have to first create the light. We do this by converting the actual oil into light energy. This is done by injecting the oil into something called plasma. You can think of plasma as a flame, since it looks like a green flame. But plasma is much hotter than a normal flame, and it needs to be in order to do its work. The plasma we use has a temperature of about 10,000° C. Plasma is actually the highest state of energy (the states of energy being solid, liquid, gas, and plasma).

Different types of plasma have been used over the last several decades that oil analysis has been commercially available. Early on, plasma was electrically generated as an arc. The drawback of an electric arc is that as it is generated, it can vary in intensity because the electrical part generating the arc erodes. The erosion causes changes in system resistance, resulting in variable plasma intensity. When using plasma to read the intensity of light from elements, it’s best if the plasma’s light is constant. Otherwise, errors can be introduced into the process.

Inductive coupled plasma, known in the trade as ICP, works by converting argon gas into plasma. So long as the argon pressures and flow rates don’t change, and the power causing the plasma’s generation is steady, the intensity of the plasma stays the same. This gives ICP spectrometry the industry gold star for incredible accuracy.

The rainbow connection 

To understand what happens next, think of a rainbow. When you see a rainbow, what you’re really seeing is moisture droplets in the air acting as prisms to separate the various wavelengths of light into individual colors that can be seen by the human eye.

A spectrometer uses this same principle. A prism inside the machine takes the “light” that’s generated by injecting the oil through the plasma and separating it into the different light frequencies of the elements. Each beam of light is then directed to a tiny slit on what is called an aperture plate. The aperture plate is a thick metal device, about 10 inches wide by 18 inches long, and the slits engraved in it are finer than a human hair. The aperture plate allows us to measure the intensity of each beam, using a device known as a photomultiplier tube.

A photomultiplier tube senses light and reacts to its intensity by vibrating faster as the light intensifies. Voila! By placing a photomultiplier tube at one of the slits on the aperture plate, we can get a digital readout of the intensity of light for any particular element in an oil sample. However, as amazing as this process is, the spectrometer is dumb as a box of rocks if the operator doesn’t install a program that will let the computer strut its stuff.

Let’s recap what we’ve learned so far. We know that argon is turned into extremely hot plasma, which burns the oil completely, turning it into light waves. The spectrometer refracts this light with a prism and then optically directs the distinct light frequencies of each of the elements to a slit in an aperture plate. A photomultiplier tube travels to each of the light slits and “reads” the amount of light there by vibrating. This marvelous arrangement still can’t tell us what we want to know without further instructions.

Setting the standard

The next step in determining what is in the oil (and in what quantities) comes in the form of “standards.” You can think of standards like your daily vitamin. Just as you can buy vitamins that contain a certain amount of iron, the iron standard (which is a liquid) contains a certain, “standard” amount of iron. You can buy standards that contain however much of any element you need.

Each standard has a certain amount of a particular element in it. If we want to know, for example, how much iron is in an oil sample, we need to give the spectrometer something to measure against. This allows it to know how many vibrations to count to determine how much iron is present. The first standard we use is a blank — that is, a zero standard — that has no iron in it. At the iron slit in the aperture plate, the photomultiplier tube vibrates at a certain rate per second. Then it remembers that rate as zero. Then, for example, a 100 ppm iron standard is fed into the machine, and again the photomultiplier tube vibrates, but this time at a faster rate. The machine remembers this rate is equal to 100 ppm. Setting the standards in the spectrometer is a process is known as calibration, and it’s something we do many times each day. It allows the spectrometer to know what standards it should be measuring against.

The spectrometer records each element’s information into a chart and uses the chart to determine how much of each element is an in actual oil sample. This process, where the photomultiplier tube travels to each slit and vibrates, repeats for each element we want to measure in an oil sample. The vibrations are translated to ppm (parts per million) readouts using the charts that were set up by the standards. Suddenly the spectrometer looks like a genius! It vaporizes the oil and tells us how much of each element is present in the sample.

There are 72 elements on the periodic chart that make enough light, when injected into the plasma, to be read on a spectrometer. Some elements make lots of light and are easy to analyze accurately. Others, like tin, make very little light and are more difficult to accurately gauge. This, along with differences in standards, calibration, and the set-up of different spectrometers, is the reason that you may find differences in the results coming from different laboratories.

A spectrometer is like your television or your car — you don’t have to understand how it works to use it. There is only one answer to how much iron, copper, or any other element may exist in an oil sample. We think ICP spectrometry has the best shot at giving you the correct answer. It is accurate and repeatable, which is a requirement for giving you an accurate appraisal of how your engine is doing mechanically based on its wear properties.

By |2024-09-19T10:44:38-04:002023|Articles, Lab Tests|Comments Off on Spectrometry: The Marvel of the Lab
Go to Top