The Lower Unit Blues

I wouldn’t consider myself a nautical man, though growing up fairly close to a lot of really nice lakes, I was able to go fishing, tubing, and water skiing every now and then. These are all things I still enjoy though this type of hobby generally requires a boat. My grandfather gave me a fishing boat many years ago and while that doesn’t need much maintenance, I do use my step-mother Kathy’s boat once or twice a summer and that’s a different story.

The boat & its lower unit

The boat is a 1994 Starcraft 1700 with a 90 HP Mercury 2-stroke engine. It’s large enough to carry six people comfortably and pull a tube around the lake. She bought the boat used in 2016 and it had obviously not seen a whole lot use or maintenance in the preceding years, so I decided to help out with what little maintenance I could, which basically involved changing the oil in the lower unit.

Now for those of you who are even less nautical than me, the lower unit is a gear box that transmits power from the engine to the propeller. Technically, it can be called a transmission, but that doesn’t really apply because it only has two gears—forward and reverse—and there isn’t any sort of complicated clutching system involved to change the gears. It’s basically a gear box, which tends to be extremely reliable and would have a super long life if it wasn’t for the environment in which it has to operate—underwater.

The water blues

As you might have guessed, water contamination is a major problem with these units and when I changed the oil in Kathy’s boat, I could tell that water was getting in.

Now, you don’t have to have worked at an oil lab for 20+ years to know what serious water contamination looks like. Think milkshake, with the main color being whatever the color of the oil was to start with. When an oil with red dye gets water in it, it tends to look like strawberry milkshake. If the oil starts out blue, you end up with a blueberry milkshake. Start with brown oil and you get chocolate.

So the very first time I changed it, I grabbed a sample as the oil was draining out to see how bad the water contamination was (see Figure 1).

Oil from the lower unit, showing a clear separation between the oil and a layer of water contamination

Figure 1: Not good

Here at the lab, even though an oil might obviously have water in it, we don’t just use the color to make that call; we use an actual ASTM method to identify water. The test is called the “crackle test.”

For that, you drop a small amount of oil onto something hot (400°F) like a brass cup, and if the oil sizzles/crackles, then yes you have water. (We get the percentage from the insolubles test but that’s another matter.) If you are crunched for time and can’t send your oil in to us, you can actually do this test at home in your kitchen using an old pan. Just don’t cook up a batch of eggs on it afterwards.

The good thing about lower units is, if you keep the oil changed and no water is getting in, they will last for a very long time. And if water is getting in, frequent oil changes will keep any damage to a minimum. However, if you neglect one that does have water leaking in, the water will cause the steel parts to rust and that will allow for all kinds of bad things to happen. In my situation, I knew the lower unit in Kathy’s boat was letting water in and that something should have been done about it, but life got in the way.

Live & learn (and hopefully don’t wreck)

So this year, when I went to try to put it in the lake I got quite the surprise when I found it the motor would not shift out of forward. Of course, I didn’t know this until I was trying to back the boat away from the boat trailer at the ramp. Needless to say, I was very confused as to why the boat was going forward when I had it in reverse, and Kathy was even more confused (and profane) when she thought the boat was going to end up in the bed of her truck. I did start the engine prior to heading to the lake and it was running like a champ. I just didn’t think to check to see if the motor would go into reverse, or even shift at all. Live and learn.

So now the lower unit is in a partial state of disassembly in my garage, and let me tell you—nothing is a sadder sight in the middle of boating season. I find myself struggling with shame and regret about not having changed oil in it sooner, or better yet, just fixed the seal that was letting water in in the first place. My only hope is that you don’t let the same thing happen to you. Change that lower unit oil and sleep easy at night. Meanwhile, I’ll be learning the real meaning of the word boat – Bust Out Another Thousand!

By |2024-06-04T14:55:42-04:002023|Articles, Marine|Comments Off on The Lower Unit Blues

This Ain’t Your Daddy’s ATF

It’s been a while since we wrote about transmissions: how they work, the differences between manual and automatic transmissions, and what transmission oil looks like. Since that time, a fair amount has changed in the transmission world, both in the machines themselves and the oil they use, as well as our knowledge on the subject. “Lifetime” transmission fluids are pretty common now, as are CVT (continuously variable transmission) units. Transmission oil has changed too, with certain transmissions requiring special oils, so we thought it was high time for an update.

Learning how newer transmissions work

While manual transmissions are fairly simple machines that tend to run forever, automatic and CVT transmissions are more mysterious in how they work.

When we hire new report writers, training them on the ins and outs of transmissions and transmission oil takes quite a bit of time and a lot of internet searching to find good videos on how they work.

From time to time, a little “hands-on” training is required. Over the years we have purchased several different junk-yard transmissions and torn them down, looking to see how they work and where the metals we see might be coming from.

Dissections like this tend to be a lot of fun and we learn quite a bit from the process. They are also low-stress affairs because we don’t have to worry about putting anything back together.

One of the first transmissions we took apart was a classic GM Turbo-Hydramatic, which was used in GM cars and trucks from the 1960s to 1990s (see Figure 1).  It was always a bit of a mystery as to where lead came from in that type of transmission and it turns out, it’s a bearing metal, just like what used to be common in engines.

Nowadays, aluminum is the bearing metal of choice for most engines and transmissions, and that makes our lives a little harder when writing reports because aluminum can be from other areas too.

Shaking up the world of transmission oil

For years and years, automatic transmissions like this didn’t have any special oil requirements. They all pretty much ran on Mercon/Dexron ATF (automatic transmission fluid). This is a light oil (normally 10W) containing only a little boron, calcium, and phosphorus as additive. It was also traditionally dyed red, so when it started leaking you knew where it was from.

Then in the early ’90s, Chrysler came out with ATF+3 and this shook everything up in the transmission world. This oil is still a 10W in viscosity and still has a red dye, but the oil additives were significantly different than anything we’d seen before (or since) — see Figure 2. Oil report on a virgin sample of ATF +3 - heavy on calcium, phosphorus, zinc, and barium

This oil and the transmissions they were used in worked just fine; problems only came about when a different type of ATF was added by mistake. This caused the transmission to burn up because the new oil’s additive package wasn’t correct. We started getting a lot of calls about this type of transmission where the mechanic thought someone added engine oil to it, but it was actually ATF that had just turned brown due to excess heat. So this problem has been around for a while, but for the longest time it was limited to Chrysler products — until CVT transmissions hit the market.

CVT transmission & oil

This type of transmission is also known as a shiftless transmission and is similar to what you might find on a snowmobile. It has a steel belt connecting two sets of cones. Both cones can change their diameter, which essentially allows the unit to have an infinite amount of “gear ratios” available.

We dissected one of these a few years back (see Figure 3) to see what made them tick. These units tend to work well but are extremely sensitive to the oil they use.

Again, most of these oils are light in viscosity (10W) but they have a unique additive package, and they also tend to be dyed blue or green to differentiate them from the typical red ATF that many transmissions run. Unfortunately, we see a lot of samples from CVT transmissions where the wrong oil has been used. This causes the units to burn up because the belt driving the cones relies on the oil’s additives to maintain the correct friction.

“Lifetime” transmission oil

The early 2000s brought about the rise of “lifetime” transmission fluids and also sparked a lot of debate about what that meant and how it could even be possible.

The idea that there is a fluid in your vehicle that never needs to be changed goes again some people’s religion, and I’ll admit it was a little difficult to understand at first. My 2003 Volkswagen Passat had that type of transmission, and it didn’t even have a dipstick, so I couldn’t run any tests on it to verify that the fluid was in good condition. Still, the lifetime of that transmission for me was 91,000 miles (that’s when I sold the car) and I will admit I never had any problem with it.

Still, it just seems wrong not to change the transmission fluid every now and then. Up until that point, I had always changed the transmission fluid in my cars and trucks, but after a lot of thought on the subject, I’m starting to wonder if that’s really necessary. For a lot of vehicles, changing the transmission oil could cause more problems than it could help, due to the possibility of the wrong oil being used to refill it.

Also, it’s quite possible that the wear accumulation in transmission oil doesn’t have the same abrasive affect that it does in engines. To demonstrate this, I’d like to show you the first sample from my 1984 Chevy Custom Deluxe K20 pickup truck (see Figure 4). You might remember this truck from such classic newsletters as “Rebuilding a GM 350”, “ZDDWhat?”, and “The Renuzit Experiment.”

When I first bought this truck in 1999, I took a sample from the transmission and was sickened by the amount of metal that was present (see B30211). I immediately changed the oil several times myself and then got in the habit of having a shop change it every year or so. Still I expected that thing to give up the ghost at any moment and just hoped I wasn’t far out of town when it happened. The funny things is, it’s still running to this very day (and is still going as of June 2024).

Now maybe all of the oil changes that I did early on made that possible, but at this point I’m leaning towards another explanation: transmissions can make a lot of metal and still be perfectly normal. Oil report on Ryan's 84 Chevy - lots of aluminum, iron, copper, lead, and tin

I think that’s because the oil in transmissions has a significantly different life than engine oil does. Transmission oils are mainly used as a hydraulic fluid to shift the gears though an ingenious invention called the valve body. This is like a circuit board that uses oil rather than electricity, and apparently the cleanliness of the oil doesn’t affect its operation.

Sure the oil also lubricates the gears, but as far as an oil’s jobs go, that’s one of the easiest things for it to do. The oil really doesn’t even have to be very clean to do that job well. So if the cleanliness of the oil isn’t that critical, then lifetime transmission oils start to make sense.

The transmission killer extraordinaire

It has been our experience that what kills most transmissions is heat. If the oil gets too hot it actually loses its viscosity and is no longer able to lubricate properly, which in turn causes more heat and eventually a total failure.

So in closing, if you have a “lifetime transmission oil,” rest easy — there is probably no need to worry about changing it. You’ll likely get sick of looking at the vehicle before the tranny dies. However, if you notice your transmission starting to leak oil, that’s the time you’ll want to have it fixed because its lifetime will quickly expire if you don’t. Just be sure they put the right oil back in!

By |2024-09-19T09:41:04-04:002023|Articles, Gas/Diesel Engine|Comments Off on This Ain’t Your Daddy’s ATF

Motorcycle Analysis

Motorcycle engine oil leads a hard life, often serving triple duty in the engine, clutch, and transmission. And a lot of bikes are air-cooled, which tend to run hotter than their liquid-cooled counterparts. We know you want to keep your bike running as long as possible, and oil analysis is a terrific tool for doing so.

We have a large database of samples from all different types of motorcycle engines, both new and old, and chances are good we’ve seen oil from your type of engine. An analysis will allow you to see how your bike stacks up to the rest. Our tests will also help determine if your bike’s oil is shearing down or thickening up from excess heat.

A lot of us are not blessed with a year-round riding season. Bikes in colder climates have to sit for at least a few months out of the year. Eventually the snow melts and riding season is just around the corner, but you can’t tell if the oil put in before the winter slumber is still safe to use just by looking at it. Or maybe winter isn’t a problem, but you haven’t been riding much and you’re wondering if you need to change the oil since it’s been a year since your last oil change. You might be surprised when an analysis reveals the oil is still in good shape and ready to be run longer.

Oil analysis can also help you choose the oil you run in the bike. Maybe you find yourself several days from home and 200 miles from the nearest town with a stoplight, down a half quart from the thrashing you did in the twisties the day before. That farm supply store you passed 20 miles back doesn’t have the special oil the dealership swore your bike needed, but if you’ve been testing and using other oils in the bike, you might be able to get your hands on a suitable alternative. Some bikes perform perfectly well with more common oils — you may get excellent results from something other than the expensive oil only found at the dealer. A lot of modern diesel engine oils are wet-clutch approved, and can be a good alternative to the boutique oils marketed for strictly motorcycle use.

Oil analysis is just as beneficial for bike engines as it is cars, trucks, airplanes, and boats. Start a baseline for your bike today with one of our free sampling kits and a specialized oil slip just for motorcycle engines!

By |2024-09-19T10:20:26-04:002023|Articles, Gas/Diesel Engine|Comments Off on Motorcycle Analysis
Go to Top